Wang Zhang, Xinhui Zhu, Limeng Du, Yuxuan Sun, Quanliang Cao, Xiaotao Han, Liang Li, Shaowei Ouyang, Li Qiu
{"title":"Electromagnetic driven forming utilizing a metal ring for controlling shapes of sheet metals","authors":"Wang Zhang, Xinhui Zhu, Limeng Du, Yuxuan Sun, Quanliang Cao, Xiaotao Han, Liang Li, Shaowei Ouyang, Li Qiu","doi":"10.1007/s43452-024-01078-2","DOIUrl":null,"url":null,"abstract":"<div><p>Electromagnetic forming (EMF) has unique advantages in processing metallic materials owing to the high-strain effect. However, it possesses poor shape-control ability for workpieces and is not suitable for forming materials with low conductivity. To address this, an electromagnetic-driven forming method with a metal driven ring is proposed to achieve Lorentz force transforming and shape control of the workpiece. The effectiveness of this method and ring configurations on the deformation behavior of AA1060-H24 aluminum alloy sheets, along with the forming mechanism, have been thoroughly investigated in combination with experiments and simulations. Results demonstrate that the introduction of the driven ring can adjust the Lorentz force generated on the sheet, resulting in a flat-topped profile with a uniform deformation ratio of 0.62, which increases by 100% compared to that without a driven ring. Meanwhile, it is discovered that the uniform deformed area, forming shapes, and targeted deformation areas can be controlled by regulating the ring configurations, which indicates that the proposed method possesses good adaptability and flexibility in shape control. Moreover, it has also been validated and applied in forming low-conductivity titanium sheets, which can be deformed into a flat-topped shape. This work provides an effective approach for shape control by aggregating the Lorentz force on the driven ring, which is essential for broadening the scope of EMF technology within the domain of sheet metal processing.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-01078-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Electromagnetic forming (EMF) has unique advantages in processing metallic materials owing to the high-strain effect. However, it possesses poor shape-control ability for workpieces and is not suitable for forming materials with low conductivity. To address this, an electromagnetic-driven forming method with a metal driven ring is proposed to achieve Lorentz force transforming and shape control of the workpiece. The effectiveness of this method and ring configurations on the deformation behavior of AA1060-H24 aluminum alloy sheets, along with the forming mechanism, have been thoroughly investigated in combination with experiments and simulations. Results demonstrate that the introduction of the driven ring can adjust the Lorentz force generated on the sheet, resulting in a flat-topped profile with a uniform deformation ratio of 0.62, which increases by 100% compared to that without a driven ring. Meanwhile, it is discovered that the uniform deformed area, forming shapes, and targeted deformation areas can be controlled by regulating the ring configurations, which indicates that the proposed method possesses good adaptability and flexibility in shape control. Moreover, it has also been validated and applied in forming low-conductivity titanium sheets, which can be deformed into a flat-topped shape. This work provides an effective approach for shape control by aggregating the Lorentz force on the driven ring, which is essential for broadening the scope of EMF technology within the domain of sheet metal processing.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.