Coupling and recoupling coefficients for Wigner’s U(4) supermultiplet symmetry

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Phong Dang, Jerry P. Draayer, Feng Pan, Tomáš Dytrych, Daniel Langr, David Kekejian, Kevin S. Becker, Noah Thompson
{"title":"Coupling and recoupling coefficients for Wigner’s U(4) supermultiplet symmetry","authors":"Phong Dang,&nbsp;Jerry P. Draayer,&nbsp;Feng Pan,&nbsp;Tomáš Dytrych,&nbsp;Daniel Langr,&nbsp;David Kekejian,&nbsp;Kevin S. Becker,&nbsp;Noah Thompson","doi":"10.1140/epjp/s13360-024-05581-6","DOIUrl":null,"url":null,"abstract":"<div><p>A novel procedure for evaluating Wigner coupling coefficients and Racah recoupling coefficients for U(4) in two group–subgroup chains is presented. The canonical <span>\\(\\rm U(4) \\supset U(3)\\supset U(2)\\supset U(1)\\)</span> coupling and recoupling coefficients are applicable to any system that possesses U(4) symmetry, while the physical <span>\\(\\mathrm{U(4)} \\supset \\textrm{SU}_{\\mathrm{S}}(2) \\otimes \\textrm{SU}_{\\mathrm{T}}(2)\\)</span> coupling coefficients are more specific to nuclear structure studies that utilize Wigner’s supermultiplet symmetry concept. The procedure that is proposed sidesteps the use of binomial coefficients and alternating sum series and consequently enables fast and accurate computation of any and all U(4)-underpinned features. The inner multiplicity of a (<i>S</i>, <i>T</i>) pair within a single <span>\\(\\mathrm U(4)\\)</span> irreducible representation is obtained from the dimension of the null space of the <span>\\(\\mathrm{SU(2)}\\)</span> raising generators, while the resolution for the outer multiplicity follows from the work of Alex et al. on <span>\\(\\mathrm U(N)\\)</span>. It is anticipated that a C++ library will ultimately be available for determining generic coupling and recoupling coefficients associated with both the <i>canonical</i> and the <i>physical</i> group–subgroup chains of U(4).</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjp/s13360-024-05581-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-024-05581-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel procedure for evaluating Wigner coupling coefficients and Racah recoupling coefficients for U(4) in two group–subgroup chains is presented. The canonical \(\rm U(4) \supset U(3)\supset U(2)\supset U(1)\) coupling and recoupling coefficients are applicable to any system that possesses U(4) symmetry, while the physical \(\mathrm{U(4)} \supset \textrm{SU}_{\mathrm{S}}(2) \otimes \textrm{SU}_{\mathrm{T}}(2)\) coupling coefficients are more specific to nuclear structure studies that utilize Wigner’s supermultiplet symmetry concept. The procedure that is proposed sidesteps the use of binomial coefficients and alternating sum series and consequently enables fast and accurate computation of any and all U(4)-underpinned features. The inner multiplicity of a (ST) pair within a single \(\mathrm U(4)\) irreducible representation is obtained from the dimension of the null space of the \(\mathrm{SU(2)}\) raising generators, while the resolution for the outer multiplicity follows from the work of Alex et al. on \(\mathrm U(N)\). It is anticipated that a C++ library will ultimately be available for determining generic coupling and recoupling coefficients associated with both the canonical and the physical group–subgroup chains of U(4).

维格纳 U(4) 超多子对称的耦合和再耦合系数
本文提出了一种在两个群-子群链中评估 U(4) 的维格纳耦合系数和拉卡再耦合系数的新程序。典范的(U(4) \supset U(3)\supset U(2)\supset U(1))耦合和再耦合系数适用于任何具有U(4)对称性的系统、而物理的(textrm{SU}_{\mathrm{T}}(2)\times \textrm{SU}_{\mathrm{T}}(2)\)耦合系数则更适用于利用维格纳超多子对称概念的核结构研究。所提出的程序避免了二项式系数和交替和数列的使用,因此能够快速准确地计算任何和所有 U(4) 下特征。在单个 \(\mathrm U(4)\) 不可还原表示中,(S, T) 对的内多重性是从 \(\mathrm{SU(2)}\) 提高生成器的无效空间维度中获得的,而外多重性的解析则来自于 Alex 等人关于 \(\mathrm U(N)\) 的工作。预计最终会有一个 C++ 库,用于确定与 U(4) 的规范链和物理群-子群链相关的通用耦合和再耦合系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal Plus
The European Physical Journal Plus PHYSICS, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
8.80%
发文量
1150
审稿时长
4-8 weeks
期刊介绍: The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences. The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信