Effective Treatment and Biodegradation Mechanism Analysis of Petroleum Hydrocarbon Wastewater by Immobilized Ochrobactrum sp. WY-4 on Iron-modified Biochar
Hengyu Chen, Chuan Yin, Fei Su, Jiancong He, Songling Wu, Menghan Jiang, Huanfang Gao, Cong Li
{"title":"Effective Treatment and Biodegradation Mechanism Analysis of Petroleum Hydrocarbon Wastewater by Immobilized Ochrobactrum sp. WY-4 on Iron-modified Biochar","authors":"Hengyu Chen, Chuan Yin, Fei Su, Jiancong He, Songling Wu, Menghan Jiang, Huanfang Gao, Cong Li","doi":"10.1007/s11270-024-07574-8","DOIUrl":null,"url":null,"abstract":"<div><p>Total petroleum hydrocarbon (TPH) in wastewater has attracted widespread attention for its environmental and biological health hazards. In the research, WY-4 strains with diesel degradation ability isolated from contaminated soil and response surface methodology was used to optimize the degradation conditions of WY-4. Fe-modified biochar (FPB) was used as an immobilized carrier, the environmental factors affecting the degradation of immobilized bacteria (FPBM) were explored and the degradation effect of FPBM was evaluated on real TPH-contaminated wastewater. Furthermore, the potential degradation mechanisms and possible degradation pathways of TPH were also explored. The results demonstrated that WY-4 was identified as <i>Ochrobactrum</i> sp., and its optimal growth conditions were pH 6.8, temperature 28.8°C and NaCl concentration 9.47 g/L. The removal efficiency by FPBM on 10,000 mg/L diesel wastewater was 72.5% and on real TPH-contaminated wastewater was 76.75% in 7 d, which was significantly higher than the degradation effect of free bacteria. The degradation pathway of two representative pollutants, naphthalene and indole, in the real TPH-contaminated wastewater was referred to be the catechol metabolic pathway. The results highlighted the potential of FPB-immobilized bacteria for the remediation of TPH-contaminated wastewater in harsh environments and provided an effective strategy for green remediation treatment of TPH contamination.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"235 12","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07574-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Total petroleum hydrocarbon (TPH) in wastewater has attracted widespread attention for its environmental and biological health hazards. In the research, WY-4 strains with diesel degradation ability isolated from contaminated soil and response surface methodology was used to optimize the degradation conditions of WY-4. Fe-modified biochar (FPB) was used as an immobilized carrier, the environmental factors affecting the degradation of immobilized bacteria (FPBM) were explored and the degradation effect of FPBM was evaluated on real TPH-contaminated wastewater. Furthermore, the potential degradation mechanisms and possible degradation pathways of TPH were also explored. The results demonstrated that WY-4 was identified as Ochrobactrum sp., and its optimal growth conditions were pH 6.8, temperature 28.8°C and NaCl concentration 9.47 g/L. The removal efficiency by FPBM on 10,000 mg/L diesel wastewater was 72.5% and on real TPH-contaminated wastewater was 76.75% in 7 d, which was significantly higher than the degradation effect of free bacteria. The degradation pathway of two representative pollutants, naphthalene and indole, in the real TPH-contaminated wastewater was referred to be the catechol metabolic pathway. The results highlighted the potential of FPB-immobilized bacteria for the remediation of TPH-contaminated wastewater in harsh environments and provided an effective strategy for green remediation treatment of TPH contamination.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.