Ouiem Baatache, Kerroum Derbal, Abderrezzaq Benalia, Amel Khalfaoui, Antonio Pizzi
{"title":"Optimization and Modeling of Bio-coagulation Using Pine Cone as a Natural Coagulant: Jar Test and Pilot-Scale Applications","authors":"Ouiem Baatache, Kerroum Derbal, Abderrezzaq Benalia, Amel Khalfaoui, Antonio Pizzi","doi":"10.1007/s11270-024-07521-7","DOIUrl":null,"url":null,"abstract":"<div><p>Natural coagulants are emerging as effective alternatives to inorganic coagulants in wastewater treatment due to their high coagulation-flocculation activity, abundance, cost-effectiveness, and biodegradability. Despite their potential, research has largely been limited to laboratory-scale experiments, with few studies exploring pilot-scale applications. This study investigates <i>pine cones</i>, a novel and underutilized waste material, as a bio-coagulant for wastewater treatment plants (WTPs). The active coagulating agent was extracted from <i>pine cones</i> treated with a 0.5 M sodium chloride (NaCl) solution. Characterization was performed using Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), and chemical analysis, revealing significant quantities of coagulating agents responsible for effective coagulation. A jar test was initially conducted to determine the optimal coagulant dosage, initial pH, and settling time for the coagulation-flocculation process. The process was modeled and optimized for turbidity, chemical oxygen demand (COD), and phosphate removal using response surface methodology (RSM) with a Box Behnken design (BBD). The optimal conditions identified were a 10 ml/L coagulant dosage at pH 10 and a settling time of 115 min. Experimental data and model predictions showed good agreement, with R<sup>2</sup> values of 99.12%, 93.52%, and 98.11% for turbidity, COD, and phosphate removal, respectively. Jar tests under these conditions achieved removal efficiencies of 98.81%, 72.02%, and 86.44% for turbidity, COD, and phosphate. The optimized conditions were then applied on a pilot scale, showing removal efficiencies of 97.77%, 71.35%, and 88.6% for turbidity, COD, and phosphate. Our findings highlight <i>pine cones</i> as an effective, cost-efficient, and eco-friendly alternative for WTPs.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07521-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Natural coagulants are emerging as effective alternatives to inorganic coagulants in wastewater treatment due to their high coagulation-flocculation activity, abundance, cost-effectiveness, and biodegradability. Despite their potential, research has largely been limited to laboratory-scale experiments, with few studies exploring pilot-scale applications. This study investigates pine cones, a novel and underutilized waste material, as a bio-coagulant for wastewater treatment plants (WTPs). The active coagulating agent was extracted from pine cones treated with a 0.5 M sodium chloride (NaCl) solution. Characterization was performed using Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), and chemical analysis, revealing significant quantities of coagulating agents responsible for effective coagulation. A jar test was initially conducted to determine the optimal coagulant dosage, initial pH, and settling time for the coagulation-flocculation process. The process was modeled and optimized for turbidity, chemical oxygen demand (COD), and phosphate removal using response surface methodology (RSM) with a Box Behnken design (BBD). The optimal conditions identified were a 10 ml/L coagulant dosage at pH 10 and a settling time of 115 min. Experimental data and model predictions showed good agreement, with R2 values of 99.12%, 93.52%, and 98.11% for turbidity, COD, and phosphate removal, respectively. Jar tests under these conditions achieved removal efficiencies of 98.81%, 72.02%, and 86.44% for turbidity, COD, and phosphate. The optimized conditions were then applied on a pilot scale, showing removal efficiencies of 97.77%, 71.35%, and 88.6% for turbidity, COD, and phosphate. Our findings highlight pine cones as an effective, cost-efficient, and eco-friendly alternative for WTPs.