Ouiem Baatache, Kerroum Derbal, Abderrezzaq Benalia, Amel Khalfaoui, Antonio Pizzi
{"title":"Optimization and Modeling of Bio-coagulation Using Pine Cone as a Natural Coagulant: Jar Test and Pilot-Scale Applications","authors":"Ouiem Baatache, Kerroum Derbal, Abderrezzaq Benalia, Amel Khalfaoui, Antonio Pizzi","doi":"10.1007/s11270-024-07521-7","DOIUrl":null,"url":null,"abstract":"<div><p>Natural coagulants are emerging as effective alternatives to inorganic coagulants in wastewater treatment due to their high coagulation-flocculation activity, abundance, cost-effectiveness, and biodegradability. Despite their potential, research has largely been limited to laboratory-scale experiments, with few studies exploring pilot-scale applications. This study investigates <i>pine cones</i>, a novel and underutilized waste material, as a bio-coagulant for wastewater treatment plants (WTPs). The active coagulating agent was extracted from <i>pine cones</i> treated with a 0.5 M sodium chloride (NaCl) solution. Characterization was performed using Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), and chemical analysis, revealing significant quantities of coagulating agents responsible for effective coagulation. A jar test was initially conducted to determine the optimal coagulant dosage, initial pH, and settling time for the coagulation-flocculation process. The process was modeled and optimized for turbidity, chemical oxygen demand (COD), and phosphate removal using response surface methodology (RSM) with a Box Behnken design (BBD). The optimal conditions identified were a 10 ml/L coagulant dosage at pH 10 and a settling time of 115 min. Experimental data and model predictions showed good agreement, with R<sup>2</sup> values of 99.12%, 93.52%, and 98.11% for turbidity, COD, and phosphate removal, respectively. Jar tests under these conditions achieved removal efficiencies of 98.81%, 72.02%, and 86.44% for turbidity, COD, and phosphate. The optimized conditions were then applied on a pilot scale, showing removal efficiencies of 97.77%, 71.35%, and 88.6% for turbidity, COD, and phosphate. Our findings highlight <i>pine cones</i> as an effective, cost-efficient, and eco-friendly alternative for WTPs.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"235 12","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07521-7","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Natural coagulants are emerging as effective alternatives to inorganic coagulants in wastewater treatment due to their high coagulation-flocculation activity, abundance, cost-effectiveness, and biodegradability. Despite their potential, research has largely been limited to laboratory-scale experiments, with few studies exploring pilot-scale applications. This study investigates pine cones, a novel and underutilized waste material, as a bio-coagulant for wastewater treatment plants (WTPs). The active coagulating agent was extracted from pine cones treated with a 0.5 M sodium chloride (NaCl) solution. Characterization was performed using Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), and chemical analysis, revealing significant quantities of coagulating agents responsible for effective coagulation. A jar test was initially conducted to determine the optimal coagulant dosage, initial pH, and settling time for the coagulation-flocculation process. The process was modeled and optimized for turbidity, chemical oxygen demand (COD), and phosphate removal using response surface methodology (RSM) with a Box Behnken design (BBD). The optimal conditions identified were a 10 ml/L coagulant dosage at pH 10 and a settling time of 115 min. Experimental data and model predictions showed good agreement, with R2 values of 99.12%, 93.52%, and 98.11% for turbidity, COD, and phosphate removal, respectively. Jar tests under these conditions achieved removal efficiencies of 98.81%, 72.02%, and 86.44% for turbidity, COD, and phosphate. The optimized conditions were then applied on a pilot scale, showing removal efficiencies of 97.77%, 71.35%, and 88.6% for turbidity, COD, and phosphate. Our findings highlight pine cones as an effective, cost-efficient, and eco-friendly alternative for WTPs.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.