Nonlinear Anderson Localized States at Arbitrary Disorder

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Wencai Liu, W.-M. Wang
{"title":"Nonlinear Anderson Localized States at Arbitrary Disorder","authors":"Wencai Liu,&nbsp;W.-M. Wang","doi":"10.1007/s00220-024-05150-z","DOIUrl":null,"url":null,"abstract":"<div><p>Given an Anderson model <span>\\(H = -\\Delta + V \\)</span> in arbitrary dimensions, and assuming the model satisfies localization, we construct quasi-periodic in time (and localized in space) solutions for the nonlinear random Schrödinger equation <span>\\(i\\frac{\\partial u}{\\partial t}=-\\Delta u+Vu+\\delta |u|^{2p}u\\)</span> for small <span>\\(\\delta \\)</span>. Our approach combines probabilistic estimates from the Anderson model with the Craig–Wayne–Bourgain method for studying quasi-periodic solutions of nonlinear PDEs.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05150-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05150-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Given an Anderson model \(H = -\Delta + V \) in arbitrary dimensions, and assuming the model satisfies localization, we construct quasi-periodic in time (and localized in space) solutions for the nonlinear random Schrödinger equation \(i\frac{\partial u}{\partial t}=-\Delta u+Vu+\delta |u|^{2p}u\) for small \(\delta \). Our approach combines probabilistic estimates from the Anderson model with the Craig–Wayne–Bourgain method for studying quasi-periodic solutions of nonlinear PDEs.

任意无序状态下的非线性安德森局部状态
给定一个任意维度的安德森模型(H = -\Delta + V \),并假设该模型满足局部化,我们为小(\delta \)的非线性随机薛定谔方程 \(i\frac{\partial u}{\partial t}=-\Delta u+Vu+\delta |u|^{2p}u\)构建了时间上的准周期(和空间上的局部)解。我们的方法结合了安德森模型的概率估计和克雷格-韦恩-布尔干方法,用于研究非线性 PDE 的准周期解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信