Dilip Kumar Mahato, Balram Ambade, Tushar Choudhary, Alaa M. Younis, Abdullah H. Alluhayb
{"title":"Quantifying the Impact of Haze and Normal Air Quality on Urban Environments: A Study of Diurnal Variation, Source Apportionment, and Correlation","authors":"Dilip Kumar Mahato, Balram Ambade, Tushar Choudhary, Alaa M. Younis, Abdullah H. Alluhayb","doi":"10.1007/s11270-024-07579-3","DOIUrl":null,"url":null,"abstract":"<div><p>Black carbon aerosols and PM2.5 have been identified as one of the major factors responsible for the ambient air quality index in Jamshedpur. The real-time measurement of BC concentration is determined with the help of an Aethalometer (AE-33), which was analyzed from November 2022 to April 2023. In the present study, we have compared the aerosol parameters during haze (Nov-Jan) and normal days (Oct, Feb-May) periods. We estimated the average mass concentration of BC, PM2.5 and AQI during haze days (HD) and normal days (ND), respectively. BC concentrations showed significant temporal variations with around 6.25 ± 3.05 and 2.52 ± 2.75 μg m − 3 during HD and ND, respectively. While PM2.5 and AQI concentrations in HD were found to be 264.64 ± 58.8 and 267.84 ± 56.72 μg m − 3, which were double of 130.19 ± 60.1 and 141.98 ± 52.44 μg m − 3, respectively, during ND. The highest monthly concentration of BC, PM2.5 and AQI was noticed in December at 8.35, 291.9 and 298 μg m − 3, respectively. Large-scale energy production in industries can consume coal and petroleum as primary fuels, which may be a major reason for the high concentrations. Due to low mixing height during winter, these emissions are not spread properly. Hence, higher concentration was found in December. The values for BC/PM2.5 were observed as 2.37% with a range from 0.54 to 4.4% and 2.48% (0.5 to 21.78%) during HD and ND, respectively. The study determined the source apportionment of BC with biomass dominance found in HD. The % BB was obtained around 53.1% throughout haze session, which was approximately 1.57 times higher than normal day (33.77%). In winter, burning wood and other solid fuels to warm the atmosphere may increase the contribution of BB to BC emissions. Furthermore, the backward trajectories calculated that air masses were concentrated within the IGP regions at lower altitudes during the HD while there was a diverse circulation of air parcels throughout the ND. Air masses were majorly coming to the receptor site from west India in ND. GIOVANNI NASA satellite model proved that surface mass concentrations of BC and PM2.5 were observed higher over IGP areas as well as other parts of India during HD with respect to ND.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07579-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Black carbon aerosols and PM2.5 have been identified as one of the major factors responsible for the ambient air quality index in Jamshedpur. The real-time measurement of BC concentration is determined with the help of an Aethalometer (AE-33), which was analyzed from November 2022 to April 2023. In the present study, we have compared the aerosol parameters during haze (Nov-Jan) and normal days (Oct, Feb-May) periods. We estimated the average mass concentration of BC, PM2.5 and AQI during haze days (HD) and normal days (ND), respectively. BC concentrations showed significant temporal variations with around 6.25 ± 3.05 and 2.52 ± 2.75 μg m − 3 during HD and ND, respectively. While PM2.5 and AQI concentrations in HD were found to be 264.64 ± 58.8 and 267.84 ± 56.72 μg m − 3, which were double of 130.19 ± 60.1 and 141.98 ± 52.44 μg m − 3, respectively, during ND. The highest monthly concentration of BC, PM2.5 and AQI was noticed in December at 8.35, 291.9 and 298 μg m − 3, respectively. Large-scale energy production in industries can consume coal and petroleum as primary fuels, which may be a major reason for the high concentrations. Due to low mixing height during winter, these emissions are not spread properly. Hence, higher concentration was found in December. The values for BC/PM2.5 were observed as 2.37% with a range from 0.54 to 4.4% and 2.48% (0.5 to 21.78%) during HD and ND, respectively. The study determined the source apportionment of BC with biomass dominance found in HD. The % BB was obtained around 53.1% throughout haze session, which was approximately 1.57 times higher than normal day (33.77%). In winter, burning wood and other solid fuels to warm the atmosphere may increase the contribution of BB to BC emissions. Furthermore, the backward trajectories calculated that air masses were concentrated within the IGP regions at lower altitudes during the HD while there was a diverse circulation of air parcels throughout the ND. Air masses were majorly coming to the receptor site from west India in ND. GIOVANNI NASA satellite model proved that surface mass concentrations of BC and PM2.5 were observed higher over IGP areas as well as other parts of India during HD with respect to ND.