Role of carbon vacancies in determining the structural, mechanical, and thermodynamic properties of (HfTaZrNb)C1-x high entropy carbides: a first-principles study

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yang Bai, Yuxin Liang, Juan Bi, Baoning Cui, Zhaopeng Lu, Bangsheng Li
{"title":"Role of carbon vacancies in determining the structural, mechanical, and thermodynamic properties of (HfTaZrNb)C1-x high entropy carbides: a first-principles study","authors":"Yang Bai,&nbsp;Yuxin Liang,&nbsp;Juan Bi,&nbsp;Baoning Cui,&nbsp;Zhaopeng Lu,&nbsp;Bangsheng Li","doi":"10.1007/s10853-024-10306-2","DOIUrl":null,"url":null,"abstract":"<div><p>High-entropy carbides (HECs), which exhibit a unique combination of properties that render them suitable for a variety of applications, have garnered significant interest. The role of vacancies in HECs, critical to their performance, remains insufficiently explored. This investigation delves into the stability, mechanical characteristics, electronic properties, and thermodynamic features of rock salt-structured (HfTaZrNb)C<sub>1-x</sub> (<i>x</i> = 0.0, 0.125, 0.25, 0.375), employing density functional theory and the Debye–Grüneisen model. Our findings confirm the thermodynamic stability of (HfTaZrNb)C<sub>1-x</sub>, as indicated by negative formation energies. Increasing vacancy content results in a decrease in lattice constants, modulus, hardness, and minimum thermal conductivity, alongside a reduction in elastic anisotropy and Debye temperature. Conversely, ductility is enhanced. Electronically, the research provides detailed insights into how vacancies influence bonding, elucidating the underlying reasons for variations in mechanical properties. This study deepens our understanding of vacancy impacts at the atomic level in HECs, providing vital data to inform future material design and application strategies.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 40","pages":"19112 - 19124"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10306-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-entropy carbides (HECs), which exhibit a unique combination of properties that render them suitable for a variety of applications, have garnered significant interest. The role of vacancies in HECs, critical to their performance, remains insufficiently explored. This investigation delves into the stability, mechanical characteristics, electronic properties, and thermodynamic features of rock salt-structured (HfTaZrNb)C1-x (x = 0.0, 0.125, 0.25, 0.375), employing density functional theory and the Debye–Grüneisen model. Our findings confirm the thermodynamic stability of (HfTaZrNb)C1-x, as indicated by negative formation energies. Increasing vacancy content results in a decrease in lattice constants, modulus, hardness, and minimum thermal conductivity, alongside a reduction in elastic anisotropy and Debye temperature. Conversely, ductility is enhanced. Electronically, the research provides detailed insights into how vacancies influence bonding, elucidating the underlying reasons for variations in mechanical properties. This study deepens our understanding of vacancy impacts at the atomic level in HECs, providing vital data to inform future material design and application strategies.

碳空位在决定 (HfTaZrNb)C1-x 高熵碳化物的结构、机械和热力学性质中的作用:第一原理研究
高熵碳化物(HECs)具有独特的综合性能,适用于多种应用领域,因此备受关注。高熵碳化物中的空位对其性能至关重要,但对其作用的研究仍然不足。本研究采用密度泛函理论和 Debye-Grüneisen 模型,深入研究了岩盐结构 (HfTaZrNb)C1-x (x = 0.0、0.125、0.25、0.375)的稳定性、机械特性、电子特性和热力学特征。我们的研究结果证实了 (HfTaZrNb)C1-x 的热力学稳定性,其形成能为负值。空位含量的增加会导致晶格常数、模量、硬度和最小热导率的降低,同时弹性各向异性和德拜温度也会降低。相反,延展性则会增强。从电子学角度来看,这项研究详细揭示了空位如何影响键合,阐明了机械性能变化的根本原因。这项研究加深了我们对高密度聚乙烯原子级空位影响的理解,为未来的材料设计和应用策略提供了重要数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信