Barış Bayrak, Haluk Görkem Alcan, Özge Çiğdem Özelmacı Durmaz, Süleyman İpek, Gökhan Kaplan, Erhan Güneyisi, Abdulkadir Cüneyt Aydın
{"title":"Studying the metakaolin content, fiber type, and high-temperature effects on the physico-mechanical properties of fly ash-based geopolymer composites","authors":"Barış Bayrak, Haluk Görkem Alcan, Özge Çiğdem Özelmacı Durmaz, Süleyman İpek, Gökhan Kaplan, Erhan Güneyisi, Abdulkadir Cüneyt Aydın","doi":"10.1007/s43452-024-01071-9","DOIUrl":null,"url":null,"abstract":"<div><p>The study investigated the physicasl characteristics and mechanical performance of fly ash-based geopolymer composites when exposed to high temperatures. Geopolymer composites were produced using fly ash as an aluminosilicate-rich raw material and a combination of sodium silicate and sodium hydroxide as an alkaline activator. In this context, the study also examined the impact of partially replacing metakaolin (7.5% and 15% by weight). Furthermore, the study aims to examine the impact of adding fiber (basalt and carbon types) on the physical, mechanical, and high-temperature properties of geopolymer composites. The physical properties investigated were unit weight, apparent porosity, water absorption, and capillary water absorption, while the strength performances investigated were flexural and compressive strengths. To monitor the effect of high temperatures on the strength characteristics of the geopolymer composites, the mixtures were exposed to temperatures of 200 °C, 400 °C, and 600 °C. Besides, SEM images were provided to illustrate the degree of geopolimerization. The results indicated that metakaolin replacement yielded mixtures having higher unit weight, but lower apparent porosity and water absorption. The results indicated that metakaolin replacement yielded mixtures having a higher unit weight, reaching an increase of about 5%, but lower apparent porosity and water absorption, with decreases reaching 18.3% and 20%, respectively. The metakaolin-blended geopolymer composites resulted in better strength performance and resistance to high temperatures. Raising the metakaolin replacement level from 0 to 15% led to an increase of 17.3% in flexural strength. The compressive strength of the composites subjected to a temperature of 200 °C exhibited an increase of over 10%. Notably, this rate of increment was observed to be nearly 20% higher in nonfibrous composites. Fiber addition decreased the compressive strength up to about 21%, while increasing the flexural strength up to 65%. Strength performance improved at 200 °C, but decreased at higher temperatures up to 600 °C. The geopolymer composites experienced significant mass loss when exposed to high temperatures.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-01071-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The study investigated the physicasl characteristics and mechanical performance of fly ash-based geopolymer composites when exposed to high temperatures. Geopolymer composites were produced using fly ash as an aluminosilicate-rich raw material and a combination of sodium silicate and sodium hydroxide as an alkaline activator. In this context, the study also examined the impact of partially replacing metakaolin (7.5% and 15% by weight). Furthermore, the study aims to examine the impact of adding fiber (basalt and carbon types) on the physical, mechanical, and high-temperature properties of geopolymer composites. The physical properties investigated were unit weight, apparent porosity, water absorption, and capillary water absorption, while the strength performances investigated were flexural and compressive strengths. To monitor the effect of high temperatures on the strength characteristics of the geopolymer composites, the mixtures were exposed to temperatures of 200 °C, 400 °C, and 600 °C. Besides, SEM images were provided to illustrate the degree of geopolimerization. The results indicated that metakaolin replacement yielded mixtures having higher unit weight, but lower apparent porosity and water absorption. The results indicated that metakaolin replacement yielded mixtures having a higher unit weight, reaching an increase of about 5%, but lower apparent porosity and water absorption, with decreases reaching 18.3% and 20%, respectively. The metakaolin-blended geopolymer composites resulted in better strength performance and resistance to high temperatures. Raising the metakaolin replacement level from 0 to 15% led to an increase of 17.3% in flexural strength. The compressive strength of the composites subjected to a temperature of 200 °C exhibited an increase of over 10%. Notably, this rate of increment was observed to be nearly 20% higher in nonfibrous composites. Fiber addition decreased the compressive strength up to about 21%, while increasing the flexural strength up to 65%. Strength performance improved at 200 °C, but decreased at higher temperatures up to 600 °C. The geopolymer composites experienced significant mass loss when exposed to high temperatures.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.