Yihan Shen, Lingyun Wang, Xiaotong Xu, Zijie Jiao, Jie Xiang, Shuiming Huang, Tao Lu, Xueling Hou
{"title":"Effects of Co addition on the microstructure and the hydrogen absorption properties of Zr–V–Fe-based alloys","authors":"Yihan Shen, Lingyun Wang, Xiaotong Xu, Zijie Jiao, Jie Xiang, Shuiming Huang, Tao Lu, Xueling Hou","doi":"10.1007/s10853-024-10288-1","DOIUrl":null,"url":null,"abstract":"<div><p>This work investigates the influence of minute additions of cobalt (Co) on the hydrogen absorption characteristics, phase composition, binding energy, and adsorption energy of the Zr<sub>70</sub>V<sub>24.6</sub>Fe<sub>5.4−<i>x</i></sub>Co<sub><i>x</i></sub> (wt%) (<i>x</i> = 0 ~ 2.0) alloys. The research revealed that the Zr<sub>70</sub>V<sub>24.6</sub>Fe<sub>4.4</sub>Co<sub>1.0</sub> alloy exhibits the peak hydrogen absorption capacity. In comparison with the Zr<sub>70</sub>V<sub>24.6</sub>Fe<sub>5.4</sub> (wt%) alloy, the hydrogen absorption properties increase from 80196.34 Pa cm<sup>3</sup> g<sup>−1</sup> (<i>x</i> = 0) to 133364.79 Pa cm<sup>3</sup> g<sup>−1</sup> (<i>x</i> = 1.0 wt%), representing a 66.30% improvement in performance. The enhancements in performance can be attributed to: an increase in lattice volume due to the addition of Co, which promotes the diffusion of hydrogen atoms within the lattice; a phase transition of the AB<sub>2</sub> phase from Zr(V<sub>0.75</sub>Fe<sub>0.25</sub>)<sub>2</sub> to Zr(V<sub>0.91</sub>Co<sub>0.09</sub>)<sub>2</sub>, and a significant decrease in the binding energy of Zr from 182.99 eV (<i>x</i> = 0) to 182.30 eV (<i>x</i> = 1.0 wt%), V in the alloy from 530.91 eV (<i>x</i> = 0) to 530.35 eV (<i>x</i> = 1.0 wt%), thereby enhancing the alloy’s reactivity; according to the density functional theory calculations, the weighted adsorption energy of the alloy for H<sub>2</sub> is increased from 35.11 to 38.14 eV. These research findings offer valuable guidance for the development of getters, and besides, expected to help promote further application of getters in high-tech fields such as military and medical.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 40","pages":"19303 - 19318"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10288-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work investigates the influence of minute additions of cobalt (Co) on the hydrogen absorption characteristics, phase composition, binding energy, and adsorption energy of the Zr70V24.6Fe5.4−xCox (wt%) (x = 0 ~ 2.0) alloys. The research revealed that the Zr70V24.6Fe4.4Co1.0 alloy exhibits the peak hydrogen absorption capacity. In comparison with the Zr70V24.6Fe5.4 (wt%) alloy, the hydrogen absorption properties increase from 80196.34 Pa cm3 g−1 (x = 0) to 133364.79 Pa cm3 g−1 (x = 1.0 wt%), representing a 66.30% improvement in performance. The enhancements in performance can be attributed to: an increase in lattice volume due to the addition of Co, which promotes the diffusion of hydrogen atoms within the lattice; a phase transition of the AB2 phase from Zr(V0.75Fe0.25)2 to Zr(V0.91Co0.09)2, and a significant decrease in the binding energy of Zr from 182.99 eV (x = 0) to 182.30 eV (x = 1.0 wt%), V in the alloy from 530.91 eV (x = 0) to 530.35 eV (x = 1.0 wt%), thereby enhancing the alloy’s reactivity; according to the density functional theory calculations, the weighted adsorption energy of the alloy for H2 is increased from 35.11 to 38.14 eV. These research findings offer valuable guidance for the development of getters, and besides, expected to help promote further application of getters in high-tech fields such as military and medical.
期刊介绍:
The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.