{"title":"Analytical Survival Analysis of the Non-autonomous Ornstein–Uhlenbeck Process","authors":"L. T. Giorgini, W. Moon, J. S. Wettlaufer","doi":"10.1007/s10955-024-03355-z","DOIUrl":null,"url":null,"abstract":"<div><p>The survival probability for a periodic non-autonomous Ornstein–Uhlenbeck process is calculated analytically using two different methods. The first uses an asymptotic approach. We treat the associated Kolmogorov Backward Equation with an absorbing boundary by dividing the domain into an interior region, centered around the origin, and a “boundary layer” near the absorbing boundary. In each region we determine the leading-order analytical solutions, and construct a uniformly valid solution over the entire domain using asymptotic matching. In the second method we examine the integral relationship between the probability density function and the mean first passage time probability density function. These allow us to determine approximate analytical forms for the exit rate. The validity of the solutions derived from both methods is assessed numerically, and we find the asymptotic method to be superior.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"191 10","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-024-03355-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03355-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The survival probability for a periodic non-autonomous Ornstein–Uhlenbeck process is calculated analytically using two different methods. The first uses an asymptotic approach. We treat the associated Kolmogorov Backward Equation with an absorbing boundary by dividing the domain into an interior region, centered around the origin, and a “boundary layer” near the absorbing boundary. In each region we determine the leading-order analytical solutions, and construct a uniformly valid solution over the entire domain using asymptotic matching. In the second method we examine the integral relationship between the probability density function and the mean first passage time probability density function. These allow us to determine approximate analytical forms for the exit rate. The validity of the solutions derived from both methods is assessed numerically, and we find the asymptotic method to be superior.
期刊介绍:
The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.