{"title":"Principles for Creating Aluminum-Based Alloys Sparingly Alloyed with Scandium","authors":"V. V. Zakharov, I. A. Fisenko, T. M. Kunyavskaya","doi":"10.1007/s11041-024-01049-7","DOIUrl":null,"url":null,"abstract":"<p>Scientific foundations for creating aluminum alloys sparingly alloyed with scandium are considered. A partial replacement of costly scandium in the Al<sub>3</sub>Sc strengthening phase with another metal is proposed. This results in the formation of an Al<sub>3</sub>(Sc<sub>1–<i>x</i></sub>Me<sub><i>x</i></sub>)-type strengthening phase, which preserves the L1<sub>2</sub> crystal lattice of the Al<sub>3</sub>Sc phase and all its beneficial properties. When creating such materials, complex alloying with transition and rare earth metals is advisable. Such an approach leads to the appearance of Al<sub>3</sub>(Sc<sub>1–<i>x</i>–<i>y</i>–<i>z</i></sub>, Me<sub>1<i>x</i></sub>, Me<sub>2<i>y</i></sub>, Me<sub>3<i>z</i></sub>) phases with an L1<sub>2</sub> lattice, contributing to the formation of a complex supersaturated solid solution. Metals substituting scandium should meet the following two requirements: exhibit sufficient solubility in the Al<sub>3</sub>Sc phase and, at least, some solubility in aluminum.</p>","PeriodicalId":701,"journal":{"name":"Metal Science and Heat Treatment","volume":"66 5-6","pages":"294 - 298"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal Science and Heat Treatment","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11041-024-01049-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Scientific foundations for creating aluminum alloys sparingly alloyed with scandium are considered. A partial replacement of costly scandium in the Al3Sc strengthening phase with another metal is proposed. This results in the formation of an Al3(Sc1–xMex)-type strengthening phase, which preserves the L12 crystal lattice of the Al3Sc phase and all its beneficial properties. When creating such materials, complex alloying with transition and rare earth metals is advisable. Such an approach leads to the appearance of Al3(Sc1–x–y–z, Me1x, Me2y, Me3z) phases with an L12 lattice, contributing to the formation of a complex supersaturated solid solution. Metals substituting scandium should meet the following two requirements: exhibit sufficient solubility in the Al3Sc phase and, at least, some solubility in aluminum.
期刊介绍:
Metal Science and Heat Treatment presents new fundamental and practical research in physical metallurgy, heat treatment equipment, and surface engineering.
Topics covered include:
New structural, high temperature, tool and precision steels;
Cold-resistant, corrosion-resistant and radiation-resistant steels;
Steels with rapid decline of induced properties;
Alloys with shape memory effect;
Bulk-amorphyzable metal alloys;
Microcrystalline alloys;
Nano materials and foam materials for medical use.