Quantum chemical investigation for enhanced electrochemical sensing of toxic gases by hexaazaphenH2†

IF 2.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Sabir Ali Siddique, Muhammad Bilal Ahmed Siddique, Ejaz Ahmed, Asad Ullah, Ali Rauf, Muhammad Arif Ali, Tariq Mahmood, Abdul Rauf and Muhammad Arshad
{"title":"Quantum chemical investigation for enhanced electrochemical sensing of toxic gases by hexaazaphenH2†","authors":"Sabir Ali Siddique, Muhammad Bilal Ahmed Siddique, Ejaz Ahmed, Asad Ullah, Ali Rauf, Muhammad Arif Ali, Tariq Mahmood, Abdul Rauf and Muhammad Arshad","doi":"10.1039/D4NJ02845G","DOIUrl":null,"url":null,"abstract":"<p >Strategies for sensing toxic gases have garnered significant attention for environmental monitoring and air pollution control. In this study, we investigated the adsorption behavior of hazardous gases (H<small><sub>2</sub></small>S, SO<small><sub>2</sub></small>, SO<small><sub>3</sub></small>, N<small><sub>2</sub></small>O, and NO<small><sub>2</sub></small>) on an organic macrocyclic compound, hexaazaphenH<small><sub>2</sub></small> (HA), using a quantum chemical approach. Density functional theory (DFT) was employed to study the interactions of HA with the target gases. Optimized geometries, electronic parameters, and natural bond orbital (NBO) charge transfer analyses confirmed stable interactions between the gases and HA. The charge-transfer spectra (CTS) analysis shows distinct absorption features in HA complexes, influenced by the attached analyte, highlighting their potential for selective gas sensing. Non-covalent interaction analysis revealed electrostatic interactions, steric repulsion, and van der Waals dispersion forces, indicating physisorption. The interaction energies followed the trend SO<small><sub>3</sub></small>@HA ≫ SO<small><sub>2</sub></small>@HA &gt; H<small><sub>2</sub></small>S@HA &gt; NO<small><sub>2</sub></small>@HA &gt; N<small><sub>2</sub></small>O@HA, highlighting the significant adsorption of sulfur-containing analytes. Furthermore, the effect of an applied external electric field (EEF) ranging from −0.26 to 0.26 V Å<small><sup>−1</sup></small> was studied, revealing that increasing EEF enhances adsorption strength and polarization, with SO<small><sub>3</sub></small> showing the most significant changes. Additionally, electronic and charge transfer absorption spectroscopy indicated that the HA complexes exhibit distinct absorption peaks, which are influenced by the nature of the attached analyte. These findings suggest that HA is highly sensitive to harmful gases, making it a promising candidate for developing advanced environment-monitoring sensors.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 42","pages":" 18128-18142"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nj/d4nj02845g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Strategies for sensing toxic gases have garnered significant attention for environmental monitoring and air pollution control. In this study, we investigated the adsorption behavior of hazardous gases (H2S, SO2, SO3, N2O, and NO2) on an organic macrocyclic compound, hexaazaphenH2 (HA), using a quantum chemical approach. Density functional theory (DFT) was employed to study the interactions of HA with the target gases. Optimized geometries, electronic parameters, and natural bond orbital (NBO) charge transfer analyses confirmed stable interactions between the gases and HA. The charge-transfer spectra (CTS) analysis shows distinct absorption features in HA complexes, influenced by the attached analyte, highlighting their potential for selective gas sensing. Non-covalent interaction analysis revealed electrostatic interactions, steric repulsion, and van der Waals dispersion forces, indicating physisorption. The interaction energies followed the trend SO3@HA ≫ SO2@HA > H2S@HA > NO2@HA > N2O@HA, highlighting the significant adsorption of sulfur-containing analytes. Furthermore, the effect of an applied external electric field (EEF) ranging from −0.26 to 0.26 V Å−1 was studied, revealing that increasing EEF enhances adsorption strength and polarization, with SO3 showing the most significant changes. Additionally, electronic and charge transfer absorption spectroscopy indicated that the HA complexes exhibit distinct absorption peaks, which are influenced by the nature of the attached analyte. These findings suggest that HA is highly sensitive to harmful gases, making it a promising candidate for developing advanced environment-monitoring sensors.

Abstract Image

六氮杂吩氢†用于增强有毒气体电化学传感的量子化学研究
感应有毒气体的策略在环境监测和空气污染控制方面备受关注。在本研究中,我们采用量子化学方法研究了有害气体(H2S、SO2、SO3、N2O 和 NO2)在有机大环化合物 hexaazaphenH2 (HA) 上的吸附行为。采用密度泛函理论(DFT)研究了 HA 与目标气体的相互作用。优化的几何结构、电子参数和天然键轨道(NBO)电荷转移分析证实了气体与 HA 之间稳定的相互作用。电荷转移光谱(CTS)分析表明,HA 复合物受附着的分析物影响,具有明显的吸收特征,突出了其用于选择性气体传感的潜力。非共价相互作用分析显示了静电相互作用、立体斥力和范德华分散力,表明了物理吸附作用。相互作用能的变化趋势为 SO3@HA ≫ SO2@HA > H2S@HA > NO2@HA > N2O@HA,这表明含硫分析物具有显著的吸附作用。此外,还研究了-0.26 至 0.26 V Å-1的外加电场(EEF)的影响,结果表明增加 EEF 会增强吸附强度和极化,其中 SO3 的变化最为显著。此外,电子和电荷转移吸收光谱表明,HA 复合物表现出不同的吸收峰,这些吸收峰受到所附分析物性质的影响。这些研究结果表明,HA 对有害气体高度敏感,是开发先进环境监测传感器的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信