Cost-effective synthesis of rGO/CeNiO3 perovskite nanocomposites for enhanced and stable supercapacitors and oxygen evolution reaction catalysts†

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lakshmanan Kumaresan, Govindasamy Palanisamy and Jintae Lee
{"title":"Cost-effective synthesis of rGO/CeNiO3 perovskite nanocomposites for enhanced and stable supercapacitors and oxygen evolution reaction catalysts†","authors":"Lakshmanan Kumaresan, Govindasamy Palanisamy and Jintae Lee","doi":"10.1039/D4TC03159H","DOIUrl":null,"url":null,"abstract":"<p >The main goal of this study is to make a nanocomposite electrode and electrocatalyst that combines the high conductivity of reduced rGO with CeNiO<small><sub>3</sub></small> nanoparticles to improve the OER and supercapacitors’ performance. This nanocomposite, rGO/CeNiO<small><sub>3</sub></small>, was designed to improve energy storage capacity and catalytic efficiency. To synthesize the rGO/CeNiO<small><sub>3</sub></small> nanocomposite, reduced graphene oxide was produced using a straightforward hammer modification method with a milling process, while cerium perovskite nanoparticles and composites were obtained through coprecipitation and ultrasonication techniques. The produced nanoparticle's shape, oxidation states, and crystal structure were all determined by the many characterizations that were carried out. The electrochemical performance tests compared the behavior of CeO<small><sub>2</sub></small>, CeNiO<small><sub>3</sub></small>, and rGO/CeNiO<small><sub>3</sub></small> electrodes to evaluate their potential in supercapacitors. The rGO/CeNiO<small><sub>3</sub></small> nanocomposite exhibited impressive pseudocapacitive properties, with a specific capacitance of 1208.7 F g<small><sup>−1</sup></small> at a current density of 1 A g<small><sup>−1</sup></small>. The material's cycling stability was remarkable; it maintained 91% of its initial capacitance even after 6000 charge discharge. Additionally, the rGO/CeNiO<small><sub>3</sub></small> composite exhibited superior and consistent electrocatalytic performance. To reach a current density of 10 mA cm<small><sup>−2</sup></small> during the oxygen evolution process, an overpotential of just 227 mV was needed. These results suggest that graphene and perovskite-based nanocomposites have significant potential for supercapacitors and reliable electrocatalysts.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03159h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The main goal of this study is to make a nanocomposite electrode and electrocatalyst that combines the high conductivity of reduced rGO with CeNiO3 nanoparticles to improve the OER and supercapacitors’ performance. This nanocomposite, rGO/CeNiO3, was designed to improve energy storage capacity and catalytic efficiency. To synthesize the rGO/CeNiO3 nanocomposite, reduced graphene oxide was produced using a straightforward hammer modification method with a milling process, while cerium perovskite nanoparticles and composites were obtained through coprecipitation and ultrasonication techniques. The produced nanoparticle's shape, oxidation states, and crystal structure were all determined by the many characterizations that were carried out. The electrochemical performance tests compared the behavior of CeO2, CeNiO3, and rGO/CeNiO3 electrodes to evaluate their potential in supercapacitors. The rGO/CeNiO3 nanocomposite exhibited impressive pseudocapacitive properties, with a specific capacitance of 1208.7 F g−1 at a current density of 1 A g−1. The material's cycling stability was remarkable; it maintained 91% of its initial capacitance even after 6000 charge discharge. Additionally, the rGO/CeNiO3 composite exhibited superior and consistent electrocatalytic performance. To reach a current density of 10 mA cm−2 during the oxygen evolution process, an overpotential of just 227 mV was needed. These results suggest that graphene and perovskite-based nanocomposites have significant potential for supercapacitors and reliable electrocatalysts.

Abstract Image

具有成本效益的 rGO/CeNiO3 高纯氧化物纳米复合材料的合成,用于增强和稳定超级电容器和氧进化反应催化剂†。
本研究的主要目标是制作一种纳米复合电极和电催化剂,将还原型 rGO 的高导电性与 CeNiO3 纳米粒子相结合,以提高 OER 和超级电容器的性能。这种名为 rGO/CeNiO3 的纳米复合材料旨在提高储能能力和催化效率。为了合成 rGO/CeNiO3 纳米复合材料,还原氧化石墨烯是通过直接的锤击改性法和研磨工艺制得的,而过氧化铈纳米粒子和复合材料则是通过共沉淀和超声波技术获得的。所生产的纳米粒子的形状、氧化态和晶体结构都是通过多次表征确定的。电化学性能测试比较了 CeO2、CeNiO3 和 rGO/CeNiO3 电极的行为,以评估它们在超级电容器中的潜力。rGO/CeNiO3 纳米复合材料表现出令人印象深刻的伪电容特性,在电流密度为 1 A g-1 时,比电容为 1208.7 F g-1。该材料的循环稳定性非常出色;即使在 6000 次充电放电后,它仍能保持 91% 的初始电容。此外,rGO/CeNiO3 复合材料还表现出卓越而稳定的电催化性能。在氧进化过程中,要达到 10 mA cm-2 的电流密度,过电位仅需 227 mV。这些结果表明,石墨烯和透辉石基纳米复合材料在超级电容器和可靠的电催化剂方面具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信