Combinatorial Constructions of Optimal Quaternary Additive Codes

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Chaofeng Guan;Jingjie Lv;Gaojun Luo;Zhi Ma
{"title":"Combinatorial Constructions of Optimal Quaternary Additive Codes","authors":"Chaofeng Guan;Jingjie Lv;Gaojun Luo;Zhi Ma","doi":"10.1109/TIT.2024.3467123","DOIUrl":null,"url":null,"abstract":"This paper aims to construct optimal quaternary additive codes with non-integer dimensions. Firstly, we propose combinatorial constructions of quaternary additive constant-weight codes, alongside additive generalized anticode construction. Subsequently, we propose generalized Construction X, which facilitates the construction of non-integer dimensional optimal additive codes from linear codes. Then, we construct ten classes of optimal quaternary non-integer dimensional additive codes through these two methods. As an application, we also determine the optimal additive \n<inline-formula> <tex-math>$[n,3.5,n-t]_{4}$ </tex-math></inline-formula>\n codes for all t with variable n, except for \n<inline-formula> <tex-math>$t=6,7,12$ </tex-math></inline-formula>\n.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 11","pages":"7690-7700"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10693309/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to construct optimal quaternary additive codes with non-integer dimensions. Firstly, we propose combinatorial constructions of quaternary additive constant-weight codes, alongside additive generalized anticode construction. Subsequently, we propose generalized Construction X, which facilitates the construction of non-integer dimensional optimal additive codes from linear codes. Then, we construct ten classes of optimal quaternary non-integer dimensional additive codes through these two methods. As an application, we also determine the optimal additive $[n,3.5,n-t]_{4}$ codes for all t with variable n, except for $t=6,7,12$ .
最优四元加法码的组合构造
本文旨在构建非整数维的最优四元加法码。首先,我们提出了四元加法恒重码的组合构造,以及加法广义反码构造。随后,我们提出了广义构造 X,它有助于从线性码构造非整数维最优加法码。然后,我们通过这两种方法构建了十类最优四元非整数维加法码。作为应用,我们还确定了除 $t=6,7,12$ 外,所有 t 的可变 n 的最优加法码 $[n,3.5,n-t]_{4}$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信