Efficient Algorithms for Constructing Minimum-Weight Codewords in Some Extended Binary BCH Codes

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Amit Berman;Yaron Shany;Itzhak Tamo
{"title":"Efficient Algorithms for Constructing Minimum-Weight Codewords in Some Extended Binary BCH Codes","authors":"Amit Berman;Yaron Shany;Itzhak Tamo","doi":"10.1109/TIT.2024.3465218","DOIUrl":null,"url":null,"abstract":"We present \n<inline-formula> <tex-math>$O(m^{3})$ </tex-math></inline-formula>\n algorithms for specifying the support of minimum-weight codewords of extended binary BCH codes of length \n<inline-formula> <tex-math>$n=2^{m}$ </tex-math></inline-formula>\n and designed distance \n<inline-formula> <tex-math>$d(m,s,i):=2^{m-1-s}-2^{m-1-i-s}$ </tex-math></inline-formula>\n for some values of \n<inline-formula> <tex-math>$m,i,s$ </tex-math></inline-formula>\n, where m may grow to infinity. Here, the support is specified as the sum of two sets: a set of \n<inline-formula> <tex-math>$2^{2i-1}-2^{i-1}$ </tex-math></inline-formula>\n elements, and a subspace of dimension \n<inline-formula> <tex-math>$m-2i-s$ </tex-math></inline-formula>\n, specified by a basis. In some detail, for designed distance \n<inline-formula> <tex-math>$6\\cdot 2^{j}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$j\\in \\{0,\\ldots ,m-4\\}$ </tex-math></inline-formula>\n, we have a deterministic algorithm for even \n<inline-formula> <tex-math>$m\\geq 4$ </tex-math></inline-formula>\n, and a probabilistic algorithm with success probability \n<inline-formula> <tex-math>$1-O(2^{-m})$ </tex-math></inline-formula>\n for odd \n<inline-formula> <tex-math>$m\\gt 4$ </tex-math></inline-formula>\n. For designed distance \n<inline-formula> <tex-math>$28\\cdot 2^{j}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$j\\in \\{0,\\ldots , m-6\\}$ </tex-math></inline-formula>\n, we have a probabilistic algorithm with success probability \n<inline-formula> <tex-math>$\\geq \\frac {1}{3}-O(2^{-m/2})$ </tex-math></inline-formula>\n for even \n<inline-formula> <tex-math>$m\\geq 6$ </tex-math></inline-formula>\n. Finally, for designed distance \n<inline-formula> <tex-math>$120\\cdot 2^{j}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$j\\in \\{0,\\ldots , m-8\\}$ </tex-math></inline-formula>\n, we have a deterministic algorithm for \n<inline-formula> <tex-math>$m\\geq 8$ </tex-math></inline-formula>\n divisible by 4. We also show how Gold functions can be used to find the support of minimum-weight words for designed distance \n<inline-formula> <tex-math>$d(m,s,i)$ </tex-math></inline-formula>\n (for \n<inline-formula> <tex-math>$i\\in \\{0,\\ldots ,\\lfloor m/2\\rfloor \\}$ </tex-math></inline-formula>\n, and \n<inline-formula> <tex-math>$s\\leq m-2i$ </tex-math></inline-formula>\n) whenever \n<inline-formula> <tex-math>$2i|m$ </tex-math></inline-formula>\n. Our construction builds on results of Kasami and Lin, who proved that for extended binary BCH codes of designed distance \n<inline-formula> <tex-math>$d(m,s,i)$ </tex-math></inline-formula>\n (for integers \n<inline-formula> <tex-math>$m\\geq 2$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$0\\leq i\\leq \\lfloor m/2\\rfloor $ </tex-math></inline-formula>\n, and \n<inline-formula> <tex-math>$0\\leq s\\leq m-2i$ </tex-math></inline-formula>\n), the minimum distance equals the designed distance. The proof of Kasami and Lin makes use of a non-constructive existence result of Berlekamp, and a constructive “down-conversion theorem” that converts some words in BCH codes to lower-weight words in BCH codes of lower designed distance. Our main contribution is in replacing the non-constructive counting argument of Berlekamp by a low-complexity algorithm. In one aspect, the current paper extends the results of Grigorescu and Kaufman, who presented explicit minimum-weight codewords for extended binary BCH codes of designed distance exactly 6 (and hence also for designed distance \n<inline-formula> <tex-math>$6\\cdot 2^{j}$ </tex-math></inline-formula>\n, by a well-known “up-conversion theorem”), as we cover more cases of the minimum distance. In fact, we prove that the codeword constructed by Grigorescu and Kaufman is a special case of the current construction. However, the minimum-weight codewords we construct do not generate the code, and are not affine generators, except, possibly, for a designed distance of 6.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 11","pages":"7673-7689"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10684736/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We present $O(m^{3})$ algorithms for specifying the support of minimum-weight codewords of extended binary BCH codes of length $n=2^{m}$ and designed distance $d(m,s,i):=2^{m-1-s}-2^{m-1-i-s}$ for some values of $m,i,s$ , where m may grow to infinity. Here, the support is specified as the sum of two sets: a set of $2^{2i-1}-2^{i-1}$ elements, and a subspace of dimension $m-2i-s$ , specified by a basis. In some detail, for designed distance $6\cdot 2^{j}$ , $j\in \{0,\ldots ,m-4\}$ , we have a deterministic algorithm for even $m\geq 4$ , and a probabilistic algorithm with success probability $1-O(2^{-m})$ for odd $m\gt 4$ . For designed distance $28\cdot 2^{j}$ , $j\in \{0,\ldots , m-6\}$ , we have a probabilistic algorithm with success probability $\geq \frac {1}{3}-O(2^{-m/2})$ for even $m\geq 6$ . Finally, for designed distance $120\cdot 2^{j}$ , $j\in \{0,\ldots , m-8\}$ , we have a deterministic algorithm for $m\geq 8$ divisible by 4. We also show how Gold functions can be used to find the support of minimum-weight words for designed distance $d(m,s,i)$ (for $i\in \{0,\ldots ,\lfloor m/2\rfloor \}$ , and $s\leq m-2i$ ) whenever $2i|m$ . Our construction builds on results of Kasami and Lin, who proved that for extended binary BCH codes of designed distance $d(m,s,i)$ (for integers $m\geq 2$ , $0\leq i\leq \lfloor m/2\rfloor $ , and $0\leq s\leq m-2i$ ), the minimum distance equals the designed distance. The proof of Kasami and Lin makes use of a non-constructive existence result of Berlekamp, and a constructive “down-conversion theorem” that converts some words in BCH codes to lower-weight words in BCH codes of lower designed distance. Our main contribution is in replacing the non-constructive counting argument of Berlekamp by a low-complexity algorithm. In one aspect, the current paper extends the results of Grigorescu and Kaufman, who presented explicit minimum-weight codewords for extended binary BCH codes of designed distance exactly 6 (and hence also for designed distance $6\cdot 2^{j}$ , by a well-known “up-conversion theorem”), as we cover more cases of the minimum distance. In fact, we prove that the codeword constructed by Grigorescu and Kaufman is a special case of the current construction. However, the minimum-weight codewords we construct do not generate the code, and are not affine generators, except, possibly, for a designed distance of 6.
在某些扩展二进制 BCH 码中构建最小权码的高效算法
我们提出了$O(m^{3})$算法,用于指定长度为$n=2^{m}$、设计距离为$d(m,s,i):=2^{m-1-s}-2^{m-1-i-s}$的扩展二进制 BCH 码的最小权编码词的支持,其中 m 可以增长到无穷大。在这里,支持度被指定为两个集合的总和:一个是包含 2^{2i-1}-2^{i-1}$ 元素的集合,另一个是维度为 $m-2i-s$ 的子空间,由一个基础指定。详细来说,对于设计距离为 $6\cdot 2^{j}$, $j\in \{0,\ldots ,m-4\}$的问题,我们有一个针对偶数$m\geq 4$的确定性算法,以及一个针对奇数$m\gt 4$的成功概率为$1-O(2^{-m})$的概率算法。对于设计距离 $28\cdot 2^{j}$ , $j\in \{0,\ldots , m-6\}$ , 我们有一个概率算法,对于偶数 $m\geq 6$,成功概率为 $\geq \frac {1}{3}-O(2^{-m/2})$ 。最后,对于设计距离为 $120\cdot 2^{j}$ , $j\in \{0,\ldots , m-8\}$的情况,我们有一个可被 4 整除的 $m\geq 8$ 的确定性算法。我们还展示了如何使用 Gold 函数为设计的距离 $d(m,s,i)$(对于 $i\in \{0,\ldots ,\lfloor m/2\rfloor \}$,以及 $s\leq m-2i$ )找到最小权重词的支持,只要 $2i|m$。我们的结构建立在 Kasami 和 Lin 的结果之上,他们证明了对于设计距离为 $d(m,s,i)$ 的扩展二进制 BCH 码(对于整数 $m\geq 2$ , $0\leq i\leq \lfloor m/2\rfloor $ , 和 $0\leq s\leq m-2i$ ),最小距离等于设计距离。Kasami 和 Lin 的证明利用了 Berlekamp 的一个非构造性存在结果和一个构造性 "向下转换定理",该定理将 BCH 码中的一些词转换为设计距离更小的 BCH 码中的低权重词。我们的主要贡献在于用一种低复杂度算法取代了 Berlekamp 的非构造性计数论证。Grigorescu 和 Kaufman 提出了设计距离正好为 6 的扩展二进制 BCH 码的显式最小权编码字(通过著名的 "上转换定理",设计距离为 $6\cdot 2^{j}$的扩展二进制 BCH 码也有显式最小权编码字),本文从一个方面扩展了他们的研究成果,因为我们涵盖了更多的最小距离情况。事实上,我们证明了格里戈列斯库和考夫曼构造的编码是当前构造的特例。然而,我们构造的最小权码字并不生成代码,也不是仿射生成器,可能的话,设计距离为 6 的情况除外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信