Self-Powered Lateral Heterojunction Photodetectors: Unveiling Ultraviolet Sensitivity via the RbCu2I3 Microwire and the MAPbBr3 Film with Innovative Engineering

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Youchao Kong, Pinsen Zhang, Donghua Fan, Xiaoshuang Li* and Shanshan Yan*, 
{"title":"Self-Powered Lateral Heterojunction Photodetectors: Unveiling Ultraviolet Sensitivity via the RbCu2I3 Microwire and the MAPbBr3 Film with Innovative Engineering","authors":"Youchao Kong,&nbsp;Pinsen Zhang,&nbsp;Donghua Fan,&nbsp;Xiaoshuang Li* and Shanshan Yan*,&nbsp;","doi":"10.1021/acsaelm.4c0154310.1021/acsaelm.4c01543","DOIUrl":null,"url":null,"abstract":"<p >Assembling perovskites into heterojunctions enables multifunctional high-performance photodetectors. Compared with vertical heterojunctions, lateral heterojunctions enhance the optoelectronic performance of devices due to the direct contact between the photosensitive layer and light, reducing light reflection losses. However, the fabrication of all-perovskite lateral heterojunctions is challenging through a solution method. The first perovskites formed are easily dissolved by the solvent of the second precursor, hindering their further application in photodetectors. In this study, we have developed a preparation process for the lateral microwire (MW)/film heterojunction and the Ag/RbCu<sub>2</sub>I<sub>3</sub> MW/MAPbBr<sub>3</sub> film/indium tin oxide heterojunction photodetector by utilizing an optical fiber-based physical transfer step. Thanks to the high-quality RbCu<sub>2</sub>I<sub>3</sub> MW/MAPbBr<sub>3</sub> film lateral heterojunction, the device demonstrated excellent optoelectronic performance at 0 V bias voltage, with a responsivity of 0.79 mA·W<sup>–1</sup> and a detectivity of 5.34 × 10<sup>12</sup> Jones under 339 nm radiation. In addition, the device exhibited consistent and rapid response times under 355 and 450 nm irradiation. This optical fiber-based physical transfer method provides a self-powered light detection strategy for the preparation of all-perovskite lateral heterojunctions.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c01543","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Assembling perovskites into heterojunctions enables multifunctional high-performance photodetectors. Compared with vertical heterojunctions, lateral heterojunctions enhance the optoelectronic performance of devices due to the direct contact between the photosensitive layer and light, reducing light reflection losses. However, the fabrication of all-perovskite lateral heterojunctions is challenging through a solution method. The first perovskites formed are easily dissolved by the solvent of the second precursor, hindering their further application in photodetectors. In this study, we have developed a preparation process for the lateral microwire (MW)/film heterojunction and the Ag/RbCu2I3 MW/MAPbBr3 film/indium tin oxide heterojunction photodetector by utilizing an optical fiber-based physical transfer step. Thanks to the high-quality RbCu2I3 MW/MAPbBr3 film lateral heterojunction, the device demonstrated excellent optoelectronic performance at 0 V bias voltage, with a responsivity of 0.79 mA·W–1 and a detectivity of 5.34 × 1012 Jones under 339 nm radiation. In addition, the device exhibited consistent and rapid response times under 355 and 450 nm irradiation. This optical fiber-based physical transfer method provides a self-powered light detection strategy for the preparation of all-perovskite lateral heterojunctions.

Abstract Image

自供电侧向异质结光电探测器:通过 RbCu2I3 微线和 MAPbBr3 薄膜的创新工程揭开紫外线灵敏度的神秘面纱
将过氧化物组装成异质结可实现多功能高性能光电探测器。与垂直异质结相比,侧向异质结由于光敏层与光直接接触,减少了光反射损耗,从而提高了器件的光电性能。然而,通过溶液法制造全过氧化物横向异质结具有挑战性。形成的第一种过氧化物很容易被第二种前驱体的溶剂溶解,阻碍了它们在光电探测器中的进一步应用。在本研究中,我们利用基于光纤的物理转移步骤,开发了横向微线(MW)/薄膜异质结和 Ag/RbCu2I3 MW/MAPbBr3 薄膜/氧化铟锡异质结光电探测器的制备工艺。得益于高质量的 RbCu2I3 MW/MAPbBr3 薄膜横向异质结,该器件在 0 V 偏置电压下表现出了优异的光电性能,在 339 nm 辐射下的响应率为 0.79 mA-W-1,探测率为 5.34 × 1012 Jones。此外,在 355 纳米和 450 纳米辐射下,该器件还表现出一致而快速的响应时间。这种基于光纤的物理转移方法为制备全过氧化物侧向异质结提供了一种自供电光检测策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信