Yusuke Murakami, Masahiro Ando, Ayako Imamura, Ryosuke Oketani, Philippe Leproux, Sakiko Honjoh and Hideaki Kano*,
{"title":"Molecular Fingerprinting of Mouse Brain Using Ultrabroadband Coherent Anti-Stokes Raman Scattering (CARS) Microspectroscopy Empowered by Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS)","authors":"Yusuke Murakami, Masahiro Ando, Ayako Imamura, Ryosuke Oketani, Philippe Leproux, Sakiko Honjoh and Hideaki Kano*, ","doi":"10.1021/cbmi.4c0003410.1021/cbmi.4c00034","DOIUrl":null,"url":null,"abstract":"<p >The Raman fingerprint spectral region provides abundant structural information on molecules. However, analyzing vibrational images within this region using coherent Raman imaging remains challenging due to the small Raman cross section and congested spectral features. In this study, we combined ultrabroadband coherent anti-Stokes Raman scattering (CARS) microspectroscopy across the spectral range of 500–4000 cm<sup>–1</sup> with multivariate curve resolution-alternating least-squares (MCR-ALS) to reveal hidden Raman bands in the fingerprint region. Applying this method to mouse brain tissue, we extracted information on cholesterol and collagen, leveraging their distinctive molecular signatures, as well as on key molecules such as lipids, proteins, water, and nucleic acids. Moreover, the simultaneous detection of second harmonic generation facilitated label-free visualization of organelles, including arachnoid membrane and Rootletin filaments.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 10","pages":"689–697 689–697"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00034","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.4c00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Raman fingerprint spectral region provides abundant structural information on molecules. However, analyzing vibrational images within this region using coherent Raman imaging remains challenging due to the small Raman cross section and congested spectral features. In this study, we combined ultrabroadband coherent anti-Stokes Raman scattering (CARS) microspectroscopy across the spectral range of 500–4000 cm–1 with multivariate curve resolution-alternating least-squares (MCR-ALS) to reveal hidden Raman bands in the fingerprint region. Applying this method to mouse brain tissue, we extracted information on cholesterol and collagen, leveraging their distinctive molecular signatures, as well as on key molecules such as lipids, proteins, water, and nucleic acids. Moreover, the simultaneous detection of second harmonic generation facilitated label-free visualization of organelles, including arachnoid membrane and Rootletin filaments.
期刊介绍:
Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging