Defect-Selective Ferromagnetic Ordering and Optical Tunability in C Ion-Implanted Microflowers Composed of TiO2 Nanorods

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Subhashree Sahoo, Soumendra Kumar Das, Bidyadhar Das, Prasanjit Samal and Pratap Kumar Sahoo*, 
{"title":"Defect-Selective Ferromagnetic Ordering and Optical Tunability in C Ion-Implanted Microflowers Composed of TiO2 Nanorods","authors":"Subhashree Sahoo,&nbsp;Soumendra Kumar Das,&nbsp;Bidyadhar Das,&nbsp;Prasanjit Samal and Pratap Kumar Sahoo*,&nbsp;","doi":"10.1021/acsanm.4c0427810.1021/acsanm.4c04278","DOIUrl":null,"url":null,"abstract":"<p >Ion implantation is one of the versatile techniques for controllable doping of desired ions in solid materials. This work discusses the tunability of the structural, optical, and magnetic properties of hydrothermally synthesized rutile TiO<sub>2</sub> microflowers composed of nanorods due to C ion implantations. The C ions of 1.5 MeV are implanted in the fluence range of 1 × 10<sup>15</sup> – 2 × 10<sup>16</sup> ions/cm<sup>2</sup> in normal incidence. The increase in the peak broadening of the X-ray diffraction (XRD) and Raman spectra in the ion-implanted TiO<sub>2</sub> compared to the pristine TiO<sub>2</sub> indicates the degradation of crystallinity due to the creation of lattice disorder and defects. The defect states are mainly attributed to the oxygen vacancy that assists in narrowing the optical band gap and causes magnetism. As the fluence increases, more defect states are created, which reduces the optical band gap from 3.04 to 2.98 eV and increases the Urbach energy from 144 to 193 meV. The ferromagnetic ordering with a tunable coercive field in the C-irradiated TiO<sub>2</sub> is further evidenced through density functional theory (DFT) calculations, which indicate an interaction between the 3d states of Ti and 2p states of the O and C atoms. The spin-polarized total density of states for pristine TiO<sub>2</sub> with Ti and O vacancies are calculated for the net magnetic moments to match the experimental results. The demonstration of C ion-implantation defect states plays an important role in tuning the phononic, photonic, and magnetic properties of TiO<sub>2</sub> nanostructures, which are suitable for applications in versatile spintronic and optoelectronic devices based on nanorods.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c04278","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ion implantation is one of the versatile techniques for controllable doping of desired ions in solid materials. This work discusses the tunability of the structural, optical, and magnetic properties of hydrothermally synthesized rutile TiO2 microflowers composed of nanorods due to C ion implantations. The C ions of 1.5 MeV are implanted in the fluence range of 1 × 1015 – 2 × 1016 ions/cm2 in normal incidence. The increase in the peak broadening of the X-ray diffraction (XRD) and Raman spectra in the ion-implanted TiO2 compared to the pristine TiO2 indicates the degradation of crystallinity due to the creation of lattice disorder and defects. The defect states are mainly attributed to the oxygen vacancy that assists in narrowing the optical band gap and causes magnetism. As the fluence increases, more defect states are created, which reduces the optical band gap from 3.04 to 2.98 eV and increases the Urbach energy from 144 to 193 meV. The ferromagnetic ordering with a tunable coercive field in the C-irradiated TiO2 is further evidenced through density functional theory (DFT) calculations, which indicate an interaction between the 3d states of Ti and 2p states of the O and C atoms. The spin-polarized total density of states for pristine TiO2 with Ti and O vacancies are calculated for the net magnetic moments to match the experimental results. The demonstration of C ion-implantation defect states plays an important role in tuning the phononic, photonic, and magnetic properties of TiO2 nanostructures, which are suitable for applications in versatile spintronic and optoelectronic devices based on nanorods.

Abstract Image

由 TiO2 纳米棒组成的 C 离子注入微流体中的缺陷选择性铁磁有序性和光学可调谐性
离子注入是在固体材料中可控掺入所需离子的通用技术之一。本研究讨论了水热合成的由纳米棒组成的金红石 TiO2 微流体的结构、光学和磁学特性在 C 离子注入后的可调性。1.5 MeV 的 C 离子在 1 × 1015 - 2 × 1016 离子/cm2 的通量范围内正常入射。与原始 TiO2 相比,离子注入 TiO2 的 X 射线衍射 (XRD) 和拉曼光谱峰值增宽,这表明晶格无序和缺陷的产生导致结晶度下降。缺陷态主要归因于氧空位,它有助于缩小光带隙并导致磁性。随着通量的增加,会产生更多的缺陷态,从而将光带隙从 3.04 eV 缩小到 2.98 eV,并将乌巴赫能从 144 meV 提高到 193 meV。密度泛函理论(DFT)计算进一步证明了C辐照二氧化钛在可调矫顽力场下的铁磁有序性,该计算表明Ti的3d态与O和C原子的2p态之间存在相互作用。计算出的带有 Ti 和 O 空位的原始 TiO2 的自旋极化总态密度的净磁矩与实验结果相吻合。C 离子植入缺陷态的证明在调整 TiO2 纳米结构的声子、光子和磁性能方面发挥了重要作用,适合应用于基于纳米棒的多功能自旋电子和光电器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信