Synthetic Microwave Focusing Techniques for Medical Imaging: Fundamentals, Limitations, and Challenges.

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Younis M Abbosh, Kamel Sultan, Lei Guo, Amin Abbosh
{"title":"Synthetic Microwave Focusing Techniques for Medical Imaging: Fundamentals, Limitations, and Challenges.","authors":"Younis M Abbosh, Kamel Sultan, Lei Guo, Amin Abbosh","doi":"10.3390/bios14100498","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic microwave focusing methods have been widely adopted in qualitative medical imaging to detect and localize anomalies based on their electromagnetic scattering signatures. This paper discusses the principles, challenges, and limitations of synthetic microwave-focusing techniques in medical applications. It is shown that the various focusing techniques, including time reversal, confocal imaging, and delay-and-sum, are all based on the scalar solution of the electromagnetic scattering problem, assuming the imaged object, i.e., the tissue or object, is linear, reciprocal, and time-invariant. They all aim to generate a qualitative image, revealing any strong scatterer within the imaged domain. The differences among these techniques lie only in the assumptions made to derive the solution and create an image of the relevant tissue or object. To get a fast solution using limited computational resources, those methods assume the tissue is homogeneous and non-dispersive, and thus, a simplified far-field Green's function is used. Some focusing methods compensate for dispersive effects and attenuation in lossy tissues. Other approaches replace the simplified Green's function with more representative functions. While these focusing techniques offer benefits like speed and low computational requirements, they face significant ongoing challenges in real-life applications due to their oversimplified linear solutions to the complex problem of non-linear medical microwave imaging. This paper discusses these challenges and potential solutions.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506664/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14100498","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic microwave focusing methods have been widely adopted in qualitative medical imaging to detect and localize anomalies based on their electromagnetic scattering signatures. This paper discusses the principles, challenges, and limitations of synthetic microwave-focusing techniques in medical applications. It is shown that the various focusing techniques, including time reversal, confocal imaging, and delay-and-sum, are all based on the scalar solution of the electromagnetic scattering problem, assuming the imaged object, i.e., the tissue or object, is linear, reciprocal, and time-invariant. They all aim to generate a qualitative image, revealing any strong scatterer within the imaged domain. The differences among these techniques lie only in the assumptions made to derive the solution and create an image of the relevant tissue or object. To get a fast solution using limited computational resources, those methods assume the tissue is homogeneous and non-dispersive, and thus, a simplified far-field Green's function is used. Some focusing methods compensate for dispersive effects and attenuation in lossy tissues. Other approaches replace the simplified Green's function with more representative functions. While these focusing techniques offer benefits like speed and low computational requirements, they face significant ongoing challenges in real-life applications due to their oversimplified linear solutions to the complex problem of non-linear medical microwave imaging. This paper discusses these challenges and potential solutions.

用于医学成像的合成微波聚焦技术:基础、局限和挑战。
合成微波聚焦方法已被广泛应用于定性医学成像,根据电磁散射特征检测和定位异常。本文讨论了医疗应用中合成微波聚焦技术的原理、挑战和局限性。研究表明,各种聚焦技术,包括时间反转、共焦成像和延迟和等,都是基于电磁散射问题的标量解,假定成像对象(即组织或物体)是线性的、互易的和时间不变的。它们都旨在生成定性图像,显示成像区域内的任何强散射体。这些技术的区别仅在于推导解法和创建相关组织或物体图像时所作的假设。为了利用有限的计算资源快速求解,这些方法假定组织是均质和非色散的,因此使用了简化的远场格林函数。有些聚焦方法会对有损组织中的色散效应和衰减进行补偿。其他方法则用更具代表性的函数取代简化的格林函数。虽然这些聚焦技术具有速度快、计算要求低等优点,但由于它们对复杂的非线性医用微波成像问题采用了过于简化的线性解决方案,因此在实际应用中面临着巨大的持续挑战。本文将讨论这些挑战和潜在的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信