FTDZOA: An Efficient and Robust FS Method with Multi-Strategy Assistance.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Fuqiang Chen, Shitong Ye, Lijuan Xu, Rongxiang Xie
{"title":"FTDZOA: An Efficient and Robust FS Method with Multi-Strategy Assistance.","authors":"Fuqiang Chen, Shitong Ye, Lijuan Xu, Rongxiang Xie","doi":"10.3390/biomimetics9100632","DOIUrl":null,"url":null,"abstract":"<p><p>Feature selection (FS) is a pivotal technique in big data analytics, aimed at mitigating redundant information within datasets and optimizing computational resource utilization. This study introduces an enhanced zebra optimization algorithm (ZOA), termed FTDZOA, for superior feature dimensionality reduction. To address the challenges of ZOA, such as susceptibility to local optimal feature subsets, limited global search capabilities, and sluggish convergence when tackling FS problems, three strategies are integrated into the original ZOA to bolster its FS performance. Firstly, a fractional order search strategy is incorporated to preserve information from the preceding generations, thereby enhancing ZOA's exploitation capabilities. Secondly, a triple mean point guidance strategy is introduced, amalgamating information from the global optimal point, a random point, and the current point to effectively augment ZOA's exploration prowess. Lastly, the exploration capacity of ZOA is further elevated through the introduction of a differential strategy, which integrates information disparities among different individuals. Subsequently, the FTDZOA-based FS method was applied to solve 23 FS problems spanning low, medium, and high dimensions. A comparative analysis with nine advanced FS methods revealed that FTDZOA achieved higher classification accuracy on over 90% of the datasets and secured a winning rate exceeding 83% in terms of execution time. These findings confirm that FTDZOA is a reliable, high-performance, practical, and robust FS method.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505684/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9100632","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Feature selection (FS) is a pivotal technique in big data analytics, aimed at mitigating redundant information within datasets and optimizing computational resource utilization. This study introduces an enhanced zebra optimization algorithm (ZOA), termed FTDZOA, for superior feature dimensionality reduction. To address the challenges of ZOA, such as susceptibility to local optimal feature subsets, limited global search capabilities, and sluggish convergence when tackling FS problems, three strategies are integrated into the original ZOA to bolster its FS performance. Firstly, a fractional order search strategy is incorporated to preserve information from the preceding generations, thereby enhancing ZOA's exploitation capabilities. Secondly, a triple mean point guidance strategy is introduced, amalgamating information from the global optimal point, a random point, and the current point to effectively augment ZOA's exploration prowess. Lastly, the exploration capacity of ZOA is further elevated through the introduction of a differential strategy, which integrates information disparities among different individuals. Subsequently, the FTDZOA-based FS method was applied to solve 23 FS problems spanning low, medium, and high dimensions. A comparative analysis with nine advanced FS methods revealed that FTDZOA achieved higher classification accuracy on over 90% of the datasets and secured a winning rate exceeding 83% in terms of execution time. These findings confirm that FTDZOA is a reliable, high-performance, practical, and robust FS method.

FTDZOA:多策略辅助的高效稳健 FS 方法
特征选择(FS)是大数据分析中的一项关键技术,旨在减少数据集中的冗余信息并优化计算资源利用率。本研究介绍了一种增强型斑马优化算法(ZOA),称为 FTDZOA,用于实现卓越的特征降维。为了解决 ZOA 在处理 FS 问题时容易受到局部最优特征子集的影响、全局搜索能力有限以及收敛缓慢等挑战,本研究在原始 ZOA 中集成了三种策略,以提高其 FS 性能。首先,采用分数阶搜索策略保留前几代的信息,从而提高 ZOA 的利用能力。其次,引入三重均值点引导策略,综合全局最优点、随机点和当前点的信息,有效增强 ZOA 的探索能力。最后,通过引入差分策略,整合不同个体之间的信息差异,进一步提高了 ZOA 的探索能力。随后,基于 FTDZOA 的 FS 方法被应用于解决 23 个跨低、中、高维度的 FS 问题。与九种先进的金融服务方法进行比较分析后发现,FTDZOA 在超过 90% 的数据集上实现了更高的分类准确率,并且在执行时间方面确保了超过 83% 的胜率。这些发现证实,FTDZOA 是一种可靠、高性能、实用且稳健的 FS 方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信