Beatriz S. Cugnasca, Hugo M. Santos, Frederico Duarte, José Luis Capelo-Martínez, Alcindo A. Dos Santos and Carlos Lodeiro
{"title":"Fluorescent discrimination of cysteine, homocysteine, and glutathione in urine samples using a novel seleno-BODIPY probe†","authors":"Beatriz S. Cugnasca, Hugo M. Santos, Frederico Duarte, José Luis Capelo-Martínez, Alcindo A. Dos Santos and Carlos Lodeiro","doi":"10.1039/D4TB01539H","DOIUrl":null,"url":null,"abstract":"<p >Biothiols, such as cysteine (Cys), glutathione (GSH), and homocysteine (Hcy), play crucial roles in various physiological processes and serve as biomarkers for oxidative stress and redox homeostasis. Their structural similarities, however, pose significant challenges in selective detection and quantification, limiting the availability of suitable probes. Here, we report the design and synthesis of a novel ratiometric fluorescent sensor based on a seleno-BODIPY (<strong>Se-BODIPY</strong>) derivative, enabling rapid discrimination and quantification of Cys, Hcy, and GSH with low detection limits (Cys = 0.8 μM, Hcy = 20.4 μM, and GSH = 35.9 μM) <em>via</em> fluorescence. The probe exhibits high selectivity towards these biothiols over 11 amino acids, operating through dual-mode detection (absorption and emission spectra) with a visible color change from blue to orange (Cys/Hcy) or pink (GSH) in a turn-on fluorescence process. Notably, the distinct reaction mechanisms between <strong>Se-BODIPY</strong> and GSH <em>versus</em> Cys/Hcy lead to a more prominent blue shift for Cys/Hcy, facilitating their differentiation. Kinetic studies further differentiate Cys from Hcy, with the BODIPY reacting much faster with Cys than the latter. The effectiveness of the sensor was demonstrated in quantifying biothiols in urine samples, providing a non-invasive method with high recovery rates. Additionally, its incorporation into paper strips allows detection of biothiols in water samples <em>via</em> visible and UV light-induced color changes, indicating its potential for solid-state detection without organic solvents.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 46","pages":" 12038-12049"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01539h","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Biothiols, such as cysteine (Cys), glutathione (GSH), and homocysteine (Hcy), play crucial roles in various physiological processes and serve as biomarkers for oxidative stress and redox homeostasis. Their structural similarities, however, pose significant challenges in selective detection and quantification, limiting the availability of suitable probes. Here, we report the design and synthesis of a novel ratiometric fluorescent sensor based on a seleno-BODIPY (Se-BODIPY) derivative, enabling rapid discrimination and quantification of Cys, Hcy, and GSH with low detection limits (Cys = 0.8 μM, Hcy = 20.4 μM, and GSH = 35.9 μM) via fluorescence. The probe exhibits high selectivity towards these biothiols over 11 amino acids, operating through dual-mode detection (absorption and emission spectra) with a visible color change from blue to orange (Cys/Hcy) or pink (GSH) in a turn-on fluorescence process. Notably, the distinct reaction mechanisms between Se-BODIPY and GSH versus Cys/Hcy lead to a more prominent blue shift for Cys/Hcy, facilitating their differentiation. Kinetic studies further differentiate Cys from Hcy, with the BODIPY reacting much faster with Cys than the latter. The effectiveness of the sensor was demonstrated in quantifying biothiols in urine samples, providing a non-invasive method with high recovery rates. Additionally, its incorporation into paper strips allows detection of biothiols in water samples via visible and UV light-induced color changes, indicating its potential for solid-state detection without organic solvents.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices