Linlin Fan, Hua Qu, Bo Wang, Hong-zheng Li, Wen-wen Yang, Hao Guo, Shan-shan Zhang, Lin-zi Long, Yajun Liu, Gang Zhou, Chang-geng Fu and Jing Liu
{"title":"Delivery of liquid metal particles and tanshinone IIA into the pericardial cavity for myocardial infarction treatment†","authors":"Linlin Fan, Hua Qu, Bo Wang, Hong-zheng Li, Wen-wen Yang, Hao Guo, Shan-shan Zhang, Lin-zi Long, Yajun Liu, Gang Zhou, Chang-geng Fu and Jing Liu","doi":"10.1039/D4TB01274G","DOIUrl":null,"url":null,"abstract":"<p >Owing to their inherent flexibility and excellent biocompatibility, liquid metals (LMs) have been explored at the frontiers of clinical therapy. Herein, a LM and tanshinone IIA (TA) drugs were dispersed into sodium alginate (SA) solution by ultrasonication to prepare SA/LM/TA, which is an injectable biomaterial for stable drug release and intrapericardial injection for the treatment of myocardial infarction (MI). The SA/LM/TA has a low viscosity and can be injected smoothly using a syringe. In rat models of MI, we demonstrated that SA/LM/TA injection in the pericardial cavity is a biosafe and effective method to deliver a carrier containing LM particles and TA drugs for MI treatment. After injection, the drug release is slow and stable in the pericardial cavity, increasing the cardiac retention of drugs. After surgery and treatment for 7 days, the cardiac function of rats improved compared with the control group and the TA direct injection group. The intrapericardial injection of SA/LM/TA improves cardiac functions and mitigates cardiac remodeling post myocardial infarction of rats. Overall, the present study establishes a therapeutic strategy for treatment of myocardial infarction by intrapericardial injection of SA/LM/TA and expands the application categories of LM biomaterials in disease treatments.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 46","pages":" 11916-11925"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01274g","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Owing to their inherent flexibility and excellent biocompatibility, liquid metals (LMs) have been explored at the frontiers of clinical therapy. Herein, a LM and tanshinone IIA (TA) drugs were dispersed into sodium alginate (SA) solution by ultrasonication to prepare SA/LM/TA, which is an injectable biomaterial for stable drug release and intrapericardial injection for the treatment of myocardial infarction (MI). The SA/LM/TA has a low viscosity and can be injected smoothly using a syringe. In rat models of MI, we demonstrated that SA/LM/TA injection in the pericardial cavity is a biosafe and effective method to deliver a carrier containing LM particles and TA drugs for MI treatment. After injection, the drug release is slow and stable in the pericardial cavity, increasing the cardiac retention of drugs. After surgery and treatment for 7 days, the cardiac function of rats improved compared with the control group and the TA direct injection group. The intrapericardial injection of SA/LM/TA improves cardiac functions and mitigates cardiac remodeling post myocardial infarction of rats. Overall, the present study establishes a therapeutic strategy for treatment of myocardial infarction by intrapericardial injection of SA/LM/TA and expands the application categories of LM biomaterials in disease treatments.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices