A rapid field-ready electrical biosensor consisting of bismuthine-derived Au island decorated BiOCl nanosheets for Raphidiopsis raciborskii detection in freshwater†
Hyunjun Park, Sun Woo Kim, Siyun Lee, Jeongyun An, Seokho Jung, Minju Lee, Jeonghyun Kim, Daeryul Kwon, Hongje Jang and Taek Lee
{"title":"A rapid field-ready electrical biosensor consisting of bismuthine-derived Au island decorated BiOCl nanosheets for Raphidiopsis raciborskii detection in freshwater†","authors":"Hyunjun Park, Sun Woo Kim, Siyun Lee, Jeongyun An, Seokho Jung, Minju Lee, Jeonghyun Kim, Daeryul Kwon, Hongje Jang and Taek Lee","doi":"10.1039/D4TB01624F","DOIUrl":null,"url":null,"abstract":"<p >Cyanobacteria play an essential role in nutrient cycling in aquatic ecosystems. However, certain species adversely affect the environment and human health by causing harmful cyanobacterial algal blooms (cyanoHABs) and producing cyanotoxins. To address this issue, continuous cyanoHAB monitoring has been considered; however, a gold standard has not yet been established. In this study, we aimed to develop a dual DNA-targeting capacitive-type biosensor for rapid field-ready monitoring of <em>Raphidiopsis raciborskii</em>, a causative species of cyanoHAB. To enhance the sensing signal, a plate-like Au<small>–</small>BiOCl nanocomposite was synthesized using a spontaneous carbonation process without additional additives. The alternating-current electrothermal flow (ACEF) technique was applied to enable rapid DNA and probe binding within 10 min. The limits of detection (LODs) for <em>R. raciborskii RubisCO</em> large subunit (<em>rbcL</em>) and RNA polymerase beta subunit (<em>rpoB</em>) genes diluted in deionized (DI) water were 4.89 × 10<small><sup>−17</sup></small> and 3.89 × 10<small><sup>−17</sup></small> M, respectively. Furthermore, the LODs of <em>R. raciborskii rbcl</em> and <em>rpoB</em> diluted in freshwater containing HAB were 2.55 × 10<small><sup>−16</sup></small> and 3.84 × 10<small><sup>−16</sup></small> M, respectively, demonstrating the field-ready applicability of the device. The fabricated cyanobacterial DNA-sensing platform enabled powerful species-specific detection using a small sample volume and low target concentration without a nucleic acid amplification step, dramatically reducing the detection time. This study has considerable implications for detecting HABs, early warning systems, and species-specific environmental monitoring technology.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 45","pages":" 11659-11669"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01624f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Cyanobacteria play an essential role in nutrient cycling in aquatic ecosystems. However, certain species adversely affect the environment and human health by causing harmful cyanobacterial algal blooms (cyanoHABs) and producing cyanotoxins. To address this issue, continuous cyanoHAB monitoring has been considered; however, a gold standard has not yet been established. In this study, we aimed to develop a dual DNA-targeting capacitive-type biosensor for rapid field-ready monitoring of Raphidiopsis raciborskii, a causative species of cyanoHAB. To enhance the sensing signal, a plate-like Au–BiOCl nanocomposite was synthesized using a spontaneous carbonation process without additional additives. The alternating-current electrothermal flow (ACEF) technique was applied to enable rapid DNA and probe binding within 10 min. The limits of detection (LODs) for R. raciborskii RubisCO large subunit (rbcL) and RNA polymerase beta subunit (rpoB) genes diluted in deionized (DI) water were 4.89 × 10−17 and 3.89 × 10−17 M, respectively. Furthermore, the LODs of R. raciborskii rbcl and rpoB diluted in freshwater containing HAB were 2.55 × 10−16 and 3.84 × 10−16 M, respectively, demonstrating the field-ready applicability of the device. The fabricated cyanobacterial DNA-sensing platform enabled powerful species-specific detection using a small sample volume and low target concentration without a nucleic acid amplification step, dramatically reducing the detection time. This study has considerable implications for detecting HABs, early warning systems, and species-specific environmental monitoring technology.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices