Enhancing Ischemic Stroke Evaluation by a Model-Based Photoacoustic Tomography Algorithm.

Yuanyuan Li, Yi Lin, Boyi Li, Ting Feng, Dan Li, Ying Li, Yi Wu, Dean Ta
{"title":"Enhancing Ischemic Stroke Evaluation by a Model-Based Photoacoustic Tomography Algorithm.","authors":"Yuanyuan Li, Yi Lin, Boyi Li, Ting Feng, Dan Li, Ying Li, Yi Wu, Dean Ta","doi":"10.1002/jbio.202400203","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic stroke (IS) is characterized by the sudden interruption of blood supply to the brain, resulting in neurological impairments and even mortality. Photoacoustic computed tomography (PACT) integrates the high contrast of optical imaging and the penetration of ultrasound imaging, enabling non-invasive IS evaluation. However, the image reconstruction quality significantly affects the oxyhemoglobin saturation (sO<sub>2</sub>) estimation. This study investigates a model-based with total variation minimized by augmented Lagrangian and alternating direction (MB-TVAL3) approach and compared it with the widely used back-projection (BP) and delay-and-sum (DAS) algorithms. Both simulations and in vivo experiments are conducted to validate the performance of the MB-TVAL3 algorithm, showing a higher sO<sub>2</sub> estimation accuracy and sensitivity in detecting infarct area compared to BP and DAS. The findings of this study emphasize the impact of acoustic inverse problem on the accuracy of sO<sub>2</sub> estimation and the proposed approach offers valuable support for IS evaluation and cerebrovascular diagnosis.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ischemic stroke (IS) is characterized by the sudden interruption of blood supply to the brain, resulting in neurological impairments and even mortality. Photoacoustic computed tomography (PACT) integrates the high contrast of optical imaging and the penetration of ultrasound imaging, enabling non-invasive IS evaluation. However, the image reconstruction quality significantly affects the oxyhemoglobin saturation (sO2) estimation. This study investigates a model-based with total variation minimized by augmented Lagrangian and alternating direction (MB-TVAL3) approach and compared it with the widely used back-projection (BP) and delay-and-sum (DAS) algorithms. Both simulations and in vivo experiments are conducted to validate the performance of the MB-TVAL3 algorithm, showing a higher sO2 estimation accuracy and sensitivity in detecting infarct area compared to BP and DAS. The findings of this study emphasize the impact of acoustic inverse problem on the accuracy of sO2 estimation and the proposed approach offers valuable support for IS evaluation and cerebrovascular diagnosis.

通过基于模型的光声断层扫描算法加强缺血性脑卒中评估
缺血性中风(IS)的特点是大脑供血突然中断,导致神经功能损伤甚至死亡。光声计算机断层扫描(PACT)集成了光学成像的高对比度和超声成像的穿透性,可对缺血性中风进行无创评估。然而,图像重建质量会严重影响氧合血红蛋白饱和度(sO2)的估算。本研究探讨了基于模型的总变异最小化增强拉格朗日和交替方向(MB-TVAL3)方法,并将其与广泛使用的反向投影(BP)和延迟求和(DAS)算法进行了比较。模拟和活体实验验证了 MB-TVAL3 算法的性能,结果表明与 BP 和 DAS 相比,MB-TVAL3 算法在检测梗死区域方面具有更高的 sO2 估计精度和灵敏度。这项研究的结果强调了声逆问题对 sO2 估计精度的影响,所提出的方法为 IS 评估和脑血管诊断提供了有价值的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信