Deep Learning With Optical Coherence Tomography for Melanoma Identification and Risk Prediction.

Pei-Yu Lai, Tai-Yu Shih, Yu-Huan Chang, Chung-Hsing Chang, Wen-Chuan Kuo
{"title":"Deep Learning With Optical Coherence Tomography for Melanoma Identification and Risk Prediction.","authors":"Pei-Yu Lai, Tai-Yu Shih, Yu-Huan Chang, Chung-Hsing Chang, Wen-Chuan Kuo","doi":"10.1002/jbio.202400277","DOIUrl":null,"url":null,"abstract":"<p><p>Malignant melanoma is the most severe skin cancer with a rising incidence rate. Several noninvasive image techniques and computer-aided diagnosis systems have been developed to help find melanoma in its early stages. However, most previous research utilized dermoscopic images to build a diagnosis model, and only a few used prospective datasets. This study develops and evaluates a convolutional neural network (CNN) for melanoma identification and risk prediction using optical coherence tomography (OCT) imaging of mice skin. Longitudinal tests are performed on four animal models: melanoma mice, dysplastic nevus mice, and their respective controls. The CNN classifies melanoma and healthy tissues with high sensitivity (0.99) and specificity (0.98) and also assigns a risk score to each image based on the probability of melanoma presence, which may facilitate early diagnosis and management of melanoma in clinical settings.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Malignant melanoma is the most severe skin cancer with a rising incidence rate. Several noninvasive image techniques and computer-aided diagnosis systems have been developed to help find melanoma in its early stages. However, most previous research utilized dermoscopic images to build a diagnosis model, and only a few used prospective datasets. This study develops and evaluates a convolutional neural network (CNN) for melanoma identification and risk prediction using optical coherence tomography (OCT) imaging of mice skin. Longitudinal tests are performed on four animal models: melanoma mice, dysplastic nevus mice, and their respective controls. The CNN classifies melanoma and healthy tissues with high sensitivity (0.99) and specificity (0.98) and also assigns a risk score to each image based on the probability of melanoma presence, which may facilitate early diagnosis and management of melanoma in clinical settings.

深度学习与光学相干断层扫描用于黑色素瘤识别和风险预测。
恶性黑色素瘤是最严重的皮肤癌,发病率不断上升。目前已开发出几种无创图像技术和计算机辅助诊断系统,以帮助在早期阶段发现黑色素瘤。然而,以往的研究大多利用皮肤镜图像来建立诊断模型,只有少数研究使用了前瞻性数据集。本研究利用小鼠皮肤的光学相干断层扫描(OCT)成像,开发并评估了用于黑色素瘤识别和风险预测的卷积神经网络(CNN)。对四种动物模型进行了纵向测试:黑色素瘤小鼠、发育不良痣小鼠及其各自的对照组。CNN 对黑色素瘤和健康组织进行分类的灵敏度(0.99)和特异性(0.98)都很高,还能根据黑色素瘤存在的概率为每张图像分配一个风险分数,这可能有助于在临床环境中对黑色素瘤进行早期诊断和管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信