Pei-Yu Lai, Tai-Yu Shih, Yu-Huan Chang, Chung-Hsing Chang, Wen-Chuan Kuo
{"title":"Deep Learning With Optical Coherence Tomography for Melanoma Identification and Risk Prediction.","authors":"Pei-Yu Lai, Tai-Yu Shih, Yu-Huan Chang, Chung-Hsing Chang, Wen-Chuan Kuo","doi":"10.1002/jbio.202400277","DOIUrl":null,"url":null,"abstract":"<p><p>Malignant melanoma is the most severe skin cancer with a rising incidence rate. Several noninvasive image techniques and computer-aided diagnosis systems have been developed to help find melanoma in its early stages. However, most previous research utilized dermoscopic images to build a diagnosis model, and only a few used prospective datasets. This study develops and evaluates a convolutional neural network (CNN) for melanoma identification and risk prediction using optical coherence tomography (OCT) imaging of mice skin. Longitudinal tests are performed on four animal models: melanoma mice, dysplastic nevus mice, and their respective controls. The CNN classifies melanoma and healthy tissues with high sensitivity (0.99) and specificity (0.98) and also assigns a risk score to each image based on the probability of melanoma presence, which may facilitate early diagnosis and management of melanoma in clinical settings.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Malignant melanoma is the most severe skin cancer with a rising incidence rate. Several noninvasive image techniques and computer-aided diagnosis systems have been developed to help find melanoma in its early stages. However, most previous research utilized dermoscopic images to build a diagnosis model, and only a few used prospective datasets. This study develops and evaluates a convolutional neural network (CNN) for melanoma identification and risk prediction using optical coherence tomography (OCT) imaging of mice skin. Longitudinal tests are performed on four animal models: melanoma mice, dysplastic nevus mice, and their respective controls. The CNN classifies melanoma and healthy tissues with high sensitivity (0.99) and specificity (0.98) and also assigns a risk score to each image based on the probability of melanoma presence, which may facilitate early diagnosis and management of melanoma in clinical settings.