Yun-Suk Kwon, Phuong Anh Nguyen, Hai Yen Dao, Hyunsoo Jang, Soyoung Kim
{"title":"Advantages of single high-dose radiation therapy compared with conventional fractionated radiation therapy in overcoming radioresistance.","authors":"Yun-Suk Kwon, Phuong Anh Nguyen, Hai Yen Dao, Hyunsoo Jang, Soyoung Kim","doi":"10.1080/09553002.2024.2418493","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Radioresistance is a major clinical challenge in cancer treatment, as it reduces the effectiveness of radiation therapy (RT). While advances in radiation delivery have enabled the clinical use of high-dose hypofractionated RT, its impact on radioresistant tumors remains unclear. This study aimed to compare the effects of single high-dose RT with conventional fractionated RT on radioresistant breast cancer cells and explore the underlying mechanisms.</p><p><strong>Methods: </strong>Radioresistant cell lines were previously established by exposing SK-BR-3 and MCF-7 cells to 48 Gy and 70 Gy of radiation, respectively, in multiple fractions. We compared the effects of 2 Gy × 5 and 7 Gy × 1 fractions on these cells using clonogenic survival assays and western blot analysis. In vivo antitumor effects were assessed in SR tumor-bearing <i>BALB/c</i> mice irradiated with either 2 Gy × 5 or 7 Gy × 1 fractions.</p><p><strong>Results: </strong>7 Gy x1 was more efficient at killing radioresistant breast cancer cells than 2 Gy x5. Furthermore, the 7 Gy x1 fraction produced higher levels of reactive oxygen species (ROS) and decreased the expression of radioresistance factors such as p-STAT3, ACSL4, FOXM1, RAD51, Bcl-xL, and survivin. Consistent with the in vitro studies, the 7 Gy × 1 fraction also showed superior antitumor effects in SR tumor-bearing <i>BALB/c</i> mice.</p><p><strong>Conclusions: </strong>Single high-dose RT offers superior advantages over conventional fractionated RT in regard to overcoming radioresistance, supporting its potential as a promising treatment for recurrent tumors.</p>","PeriodicalId":94057,"journal":{"name":"International journal of radiation biology","volume":" ","pages":"44-55"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553002.2024.2418493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Radioresistance is a major clinical challenge in cancer treatment, as it reduces the effectiveness of radiation therapy (RT). While advances in radiation delivery have enabled the clinical use of high-dose hypofractionated RT, its impact on radioresistant tumors remains unclear. This study aimed to compare the effects of single high-dose RT with conventional fractionated RT on radioresistant breast cancer cells and explore the underlying mechanisms.
Methods: Radioresistant cell lines were previously established by exposing SK-BR-3 and MCF-7 cells to 48 Gy and 70 Gy of radiation, respectively, in multiple fractions. We compared the effects of 2 Gy × 5 and 7 Gy × 1 fractions on these cells using clonogenic survival assays and western blot analysis. In vivo antitumor effects were assessed in SR tumor-bearing BALB/c mice irradiated with either 2 Gy × 5 or 7 Gy × 1 fractions.
Results: 7 Gy x1 was more efficient at killing radioresistant breast cancer cells than 2 Gy x5. Furthermore, the 7 Gy x1 fraction produced higher levels of reactive oxygen species (ROS) and decreased the expression of radioresistance factors such as p-STAT3, ACSL4, FOXM1, RAD51, Bcl-xL, and survivin. Consistent with the in vitro studies, the 7 Gy × 1 fraction also showed superior antitumor effects in SR tumor-bearing BALB/c mice.
Conclusions: Single high-dose RT offers superior advantages over conventional fractionated RT in regard to overcoming radioresistance, supporting its potential as a promising treatment for recurrent tumors.