{"title":"Characterization and kinetics of a cathepsin B-inhibiting protein from Musa acuminata Colla peel","authors":"Sabita Rangra, Kamal Krishan Aggarwal","doi":"10.1016/j.biochi.2024.10.016","DOIUrl":null,"url":null,"abstract":"<div><div>Hyperexpression of cathepsin B caused by an imbalance of endogenous inhibitors is involved in multiple pathologies, hence making it a key therapeutic target. Protease inhibitors are effective biomolecules that regulate protease activities and are considered potential therapeutic agents in various diseases. Plant protease inhibitors have been reported as an effective complementary alternative drug. A proteinaceous cathepsin B inhibitor (CBI-BP) has been isolated from <em>Musa acuminata</em> Colla (banana) peel with a molecular weight of 27.9 kDa on SDS-PAGE. The purity of the CBI-BP was confirmed on the native- PAGE. The isolated CBI-BP showed an IC<sub>50</sub> value of 8.14 μg and a K<sub>i</sub> value of 10.59 μg (0.19 μM). Cathepsin B inhibition kinetics indicated that CBI-BP follows a mixed-type of cathepsin B inhibition. Its inhibition activity was also confirmed by reverse zymography. The inhibitor was stable from pH 2.6–10.0 with maximum activity at pH 7.2, temperature 25–100 °C and exhibited thermostability for 60 min at 70 °C. MALDI/TOF/MS analysis of CBI-BP showed 40 % similarity to the GH18 domain-containing protein (A0A4S8JRM9) from <em>Musa balbisiana.</em> Although <em>in-silico</em> docking studies showed binding of A0A4S8JRM9 to cathepsin B affects the binding energy of the substrate to cathepsin B but is not reported for any anti-cathepsin B activity. This suggests that isolated CBI-BP might be a novel protein with anti-cathepsin B activity. Thus the isolated CBI-BP may be further explored as possible anti-cathepsin B drug.</div></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"229 ","pages":"Pages 141-150"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimie","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300908424002426","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperexpression of cathepsin B caused by an imbalance of endogenous inhibitors is involved in multiple pathologies, hence making it a key therapeutic target. Protease inhibitors are effective biomolecules that regulate protease activities and are considered potential therapeutic agents in various diseases. Plant protease inhibitors have been reported as an effective complementary alternative drug. A proteinaceous cathepsin B inhibitor (CBI-BP) has been isolated from Musa acuminata Colla (banana) peel with a molecular weight of 27.9 kDa on SDS-PAGE. The purity of the CBI-BP was confirmed on the native- PAGE. The isolated CBI-BP showed an IC50 value of 8.14 μg and a Ki value of 10.59 μg (0.19 μM). Cathepsin B inhibition kinetics indicated that CBI-BP follows a mixed-type of cathepsin B inhibition. Its inhibition activity was also confirmed by reverse zymography. The inhibitor was stable from pH 2.6–10.0 with maximum activity at pH 7.2, temperature 25–100 °C and exhibited thermostability for 60 min at 70 °C. MALDI/TOF/MS analysis of CBI-BP showed 40 % similarity to the GH18 domain-containing protein (A0A4S8JRM9) from Musa balbisiana. Although in-silico docking studies showed binding of A0A4S8JRM9 to cathepsin B affects the binding energy of the substrate to cathepsin B but is not reported for any anti-cathepsin B activity. This suggests that isolated CBI-BP might be a novel protein with anti-cathepsin B activity. Thus the isolated CBI-BP may be further explored as possible anti-cathepsin B drug.
期刊介绍:
Biochimie publishes original research articles, short communications, review articles, graphical reviews, mini-reviews, and hypotheses in the broad areas of biology, including biochemistry, enzymology, molecular and cell biology, metabolic regulation, genetics, immunology, microbiology, structural biology, genomics, proteomics, and molecular mechanisms of disease. Biochimie publishes exclusively in English.
Articles are subject to peer review, and must satisfy the requirements of originality, high scientific integrity and general interest to a broad range of readers. Submissions that are judged to be of sound scientific and technical quality but do not fully satisfy the requirements for publication in Biochimie may benefit from a transfer service to a more suitable journal within the same subject area.