Lin Huang , Tao Wu , Jing Sun , Xinghuan Lin , Yuhao Peng , Rongrong Zhang , Yang Gao , Shuo Xu , Yuxin Sun , Yi Zhou , Bo Duan
{"title":"Biocompatible chitin-based Janus hydrogel membranes for periodontal repair","authors":"Lin Huang , Tao Wu , Jing Sun , Xinghuan Lin , Yuhao Peng , Rongrong Zhang , Yang Gao , Shuo Xu , Yuxin Sun , Yi Zhou , Bo Duan","doi":"10.1016/j.actbio.2024.10.038","DOIUrl":null,"url":null,"abstract":"<div><div>Periodontal defects caused by severe periodontitis are a widespread issue globally. Guided tissue regeneration (GTR) using barrier membranes for alveolar bone repair is a common clinical treatment. However, most commercially available collagen barrier membranes are expensive and lack the antibacterial properties essential for effective bone regeneration. Herein, we report a natural polysaccharide chitin hydrogel barrier membrane with a Janus structure (ChT-PDA-p-HAP), featuring high antibacterial and protein-repelling activity on the outer side and good osteogenesis ability on the inner side. This multifunctional membrane is fabricated though a three-step process: (i) dissolution and regeneration of chitin, (ii) co-deposition with polydopamine (PDA) and poly(sulfobetaine methacrylate) (pSBMA), and (iii) coating with gelatin-hydroxyapatite (gelatin-HAP). In vitro cell experiments demonstrated the membrane's high biocompatibility and significant osteogenic activity. In vivo implantation in rats with periodontal defects revealed that the cemento-enamel junction index of the ChT-PDA-p-HAP membrane (1.165 mm) was superior to that of the commercial Bio-Gide® membrane (1.350 mm). This work presents a method for fabricating a chitin-based Janus barrier membrane, potentially expanding the use of chitin in tissue engineering.</div></div><div><h3>Statement of significance</h3><div>This study introduces a Janus hydrogel membrane based on chitin, tailored for guided tissue regeneration in periodontal defects. By combining antibacterial properties and osteogenic capabilities in a single membrane, the ChT-PDA-p-HAP membrane represents a significant advancement over traditional collagen barriers. Its outer surface, enhanced by Cu<sup>2+</sup> and PDA-pSBMA coatings, resists bacterial colonization and protein adhesion effectively, while the inner side, coated with gelatin-HAP, promotes robust bone formation. In vitro experiments demonstrate high biocompatibility and substantial osteogenic differentiation, while in vivo testing in rat models confirms good therapeutic efficacy compared to commercial membranes. This multifunctional approach not only utilizes chitin's abundant natural resource but also integrates simple coating techniques to enhance therapeutic outcomes in periodontal tissue engineering, offering promising avenues for broader biomedical applications.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"190 ","pages":"Pages 219-232"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706124006305","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Periodontal defects caused by severe periodontitis are a widespread issue globally. Guided tissue regeneration (GTR) using barrier membranes for alveolar bone repair is a common clinical treatment. However, most commercially available collagen barrier membranes are expensive and lack the antibacterial properties essential for effective bone regeneration. Herein, we report a natural polysaccharide chitin hydrogel barrier membrane with a Janus structure (ChT-PDA-p-HAP), featuring high antibacterial and protein-repelling activity on the outer side and good osteogenesis ability on the inner side. This multifunctional membrane is fabricated though a three-step process: (i) dissolution and regeneration of chitin, (ii) co-deposition with polydopamine (PDA) and poly(sulfobetaine methacrylate) (pSBMA), and (iii) coating with gelatin-hydroxyapatite (gelatin-HAP). In vitro cell experiments demonstrated the membrane's high biocompatibility and significant osteogenic activity. In vivo implantation in rats with periodontal defects revealed that the cemento-enamel junction index of the ChT-PDA-p-HAP membrane (1.165 mm) was superior to that of the commercial Bio-Gide® membrane (1.350 mm). This work presents a method for fabricating a chitin-based Janus barrier membrane, potentially expanding the use of chitin in tissue engineering.
Statement of significance
This study introduces a Janus hydrogel membrane based on chitin, tailored for guided tissue regeneration in periodontal defects. By combining antibacterial properties and osteogenic capabilities in a single membrane, the ChT-PDA-p-HAP membrane represents a significant advancement over traditional collagen barriers. Its outer surface, enhanced by Cu2+ and PDA-pSBMA coatings, resists bacterial colonization and protein adhesion effectively, while the inner side, coated with gelatin-HAP, promotes robust bone formation. In vitro experiments demonstrate high biocompatibility and substantial osteogenic differentiation, while in vivo testing in rat models confirms good therapeutic efficacy compared to commercial membranes. This multifunctional approach not only utilizes chitin's abundant natural resource but also integrates simple coating techniques to enhance therapeutic outcomes in periodontal tissue engineering, offering promising avenues for broader biomedical applications.
期刊介绍:
Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.