Unraveling the proteomic signatures of coronary artery disease and hypercholesterolemia.

0 MEDICINE, RESEARCH & EXPERIMENTAL
Gulsen Guliz Anlar, Shona Pedersen, Sarah Al Ashmar, Hubert Krzyslak, Layla Kamareddine, Asad Zeidan
{"title":"Unraveling the proteomic signatures of coronary artery disease and hypercholesterolemia.","authors":"Gulsen Guliz Anlar, Shona Pedersen, Sarah Al Ashmar, Hubert Krzyslak, Layla Kamareddine, Asad Zeidan","doi":"10.17305/bb.2024.10111","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerosis, a leading cause of coronary artery disease (CAD), is heavily influenced by hypercholesterolemia (HC). Proteomics research has shown promise in identifying biological markers for CAD diagnosis and prognosis. This cross-sectional study aimed to identify novel biomarkers for detecting HC and CAD. Through the analysis of proteome data from healthy controls (n = 45) and patients diagnosed with HC (n = 51) or CAD (n = 32), distinct protein patterns associated with each condition were identified. Significant alterations in protein levels were identified with a false discovery rate (FDR)-corrected q-value of <0.05. Subsequent receiver operating characteristic (ROC) analysis, with an area under the curve (AUC) greater than 0.75, was conducted. CAD patients exhibited significantly increased levels of the cholesterol-metabolizing protein proprotein convertase subtilisin/kexin type 9 (PCSK9) and varied levels of the angiogenesis-related protein stromal-cell-derived factor-1 (SDF-1) compared to controls. In pairwise comparisons among the study groups, 65 proteins showed significant differential expression. Notably, 14 of these proteins had significant correlations with blood cholesterol levels. Additionally, 22 of the identified proteins were associated with CAD or HC pathways, with nine proteins being common to both conditions (APO E, APO E3, MMP-3, PCSK9, SDF-1, APO B, PAFAH, 60 kDa heat shock protein, and TGF-beta-activated kinase 1 and MAP3K7-binding protein 1 fusion). Nevertheless, this is an exploratory study, and validation studies are needed to confirm these potential protein biomarkers for CAD in the context of HC.</p>","PeriodicalId":72398,"journal":{"name":"Biomolecules & biomedicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17305/bb.2024.10111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Atherosclerosis, a leading cause of coronary artery disease (CAD), is heavily influenced by hypercholesterolemia (HC). Proteomics research has shown promise in identifying biological markers for CAD diagnosis and prognosis. This cross-sectional study aimed to identify novel biomarkers for detecting HC and CAD. Through the analysis of proteome data from healthy controls (n = 45) and patients diagnosed with HC (n = 51) or CAD (n = 32), distinct protein patterns associated with each condition were identified. Significant alterations in protein levels were identified with a false discovery rate (FDR)-corrected q-value of <0.05. Subsequent receiver operating characteristic (ROC) analysis, with an area under the curve (AUC) greater than 0.75, was conducted. CAD patients exhibited significantly increased levels of the cholesterol-metabolizing protein proprotein convertase subtilisin/kexin type 9 (PCSK9) and varied levels of the angiogenesis-related protein stromal-cell-derived factor-1 (SDF-1) compared to controls. In pairwise comparisons among the study groups, 65 proteins showed significant differential expression. Notably, 14 of these proteins had significant correlations with blood cholesterol levels. Additionally, 22 of the identified proteins were associated with CAD or HC pathways, with nine proteins being common to both conditions (APO E, APO E3, MMP-3, PCSK9, SDF-1, APO B, PAFAH, 60 kDa heat shock protein, and TGF-beta-activated kinase 1 and MAP3K7-binding protein 1 fusion). Nevertheless, this is an exploratory study, and validation studies are needed to confirm these potential protein biomarkers for CAD in the context of HC.

揭示冠心病和高胆固醇血症的蛋白质组特征。
动脉粥样硬化是冠状动脉疾病(CAD)的主要病因,受高胆固醇血症(HC)的影响很大。蛋白质组学研究表明,确定用于诊断和预后冠状动脉粥样硬化症的生物标志物大有可为。这项横断面研究旨在确定检测高胆固醇血症和 CAD 的新型生物标记物。通过分析健康对照组(45 人)和确诊为高血压(51 人)或冠状动脉粥样硬化(32 人)患者的蛋白质组数据,确定了与每种情况相关的不同蛋白质模式。蛋白质水平的显著变化经错误发现率(FDR)校正后的q值为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信