{"title":"Prediction of Transport and Deposition of Porous Particles in the Respiratory System Using Eulerian-Lagrangian Approach.","authors":"Sajad Eshaghi, Hassan Khaleghi, Reza Maddahian","doi":"10.1002/cnm.3873","DOIUrl":null,"url":null,"abstract":"<p><p>Deep lung delivery is crucial for respiratory disease treatment. Although nano and submicron particles exhibited a good deposition efficiency in deep regions of the lung, powder nonuniformity and particle agglomeration reduce their efficiency. Inhalation of porous particles (PPs) can overcome the mentioned challenges due to their larger size and low-density. The present study numerically investigates the deposition and penetration efficiency of orally inhaled PPs. A revised drag coefficient was implemented for PP transport. A realistic mouth-throat to the fifth generation of the lung was reconstructed from CT-scan images. A dilute suspension of uniformly distributed particles was considered at three inhalation flow rates (15, 30, and 45 L/min). Governing equations of the flow field and particle transport are solved using an Eulerian-Lagrangian approach. The results demonstrate that inhaling PPs significantly reduces the total and regional deposition of particles. There was also a critical porosity value under moderate and high inhalation flow rates for large PPs. Below this critical value, PP deposition efficiency substantially decreases. Additionally, it was also found that under low inhalation flow rates, the impact of porosity value is negligible. Almost 95% of the PPs penetrate the lower branches. These findings provide particle engineers and pharmaceutics with profound insight into developing novel inhalation techniques and drug delivery methods for deep lung delivery.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":" ","pages":"e3873"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cnm.3873","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Deep lung delivery is crucial for respiratory disease treatment. Although nano and submicron particles exhibited a good deposition efficiency in deep regions of the lung, powder nonuniformity and particle agglomeration reduce their efficiency. Inhalation of porous particles (PPs) can overcome the mentioned challenges due to their larger size and low-density. The present study numerically investigates the deposition and penetration efficiency of orally inhaled PPs. A revised drag coefficient was implemented for PP transport. A realistic mouth-throat to the fifth generation of the lung was reconstructed from CT-scan images. A dilute suspension of uniformly distributed particles was considered at three inhalation flow rates (15, 30, and 45 L/min). Governing equations of the flow field and particle transport are solved using an Eulerian-Lagrangian approach. The results demonstrate that inhaling PPs significantly reduces the total and regional deposition of particles. There was also a critical porosity value under moderate and high inhalation flow rates for large PPs. Below this critical value, PP deposition efficiency substantially decreases. Additionally, it was also found that under low inhalation flow rates, the impact of porosity value is negligible. Almost 95% of the PPs penetrate the lower branches. These findings provide particle engineers and pharmaceutics with profound insight into developing novel inhalation techniques and drug delivery methods for deep lung delivery.
期刊介绍:
All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.