Spatiotemporal dynamics in a fractional diffusive SIS epidemic model with mass action infection mechanism.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Peng Shi, Wan-Tong Li, Fei-Ying Yang
{"title":"Spatiotemporal dynamics in a fractional diffusive SIS epidemic model with mass action infection mechanism.","authors":"Peng Shi, Wan-Tong Li, Fei-Ying Yang","doi":"10.1007/s00285-024-02153-1","DOIUrl":null,"url":null,"abstract":"<p><p>This paper is concerned with spatiotemporal dynamics of a fractional diffusive susceptible-infected-susceptible (SIS) epidemic model with mass action infection mechanism. Concretely, we first focus on the existence and stability of the disease-free and endemic equilibria. Then, we give the asymptotic profiles of the endemic equilibrium on small and large diffusion rates, which can reveal the impact of dispersal rates and fractional powers simultaneously. It is worth noting that we have some counter-intuitive findings: controlling the flow of infected individuals will not eradicate the disease, but restricting the movement of susceptible individuals will make the disease disappear.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02153-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with spatiotemporal dynamics of a fractional diffusive susceptible-infected-susceptible (SIS) epidemic model with mass action infection mechanism. Concretely, we first focus on the existence and stability of the disease-free and endemic equilibria. Then, we give the asymptotic profiles of the endemic equilibrium on small and large diffusion rates, which can reveal the impact of dispersal rates and fractional powers simultaneously. It is worth noting that we have some counter-intuitive findings: controlling the flow of infected individuals will not eradicate the disease, but restricting the movement of susceptible individuals will make the disease disappear.

具有大规模行动感染机制的分数扩散 SIS 流行病模型的时空动力学。
本文主要研究具有大规模感染机制的分数扩散易感-感染-易感(SIS)流行病模型的时空动力学。具体来说,我们首先关注无病均衡和流行均衡的存在性和稳定性。然后,我们给出了地方病均衡在小扩散率和大扩散率下的渐近曲线,这可以同时揭示扩散率和分数幂的影响。值得注意的是,我们得出了一些与直觉相反的结论:控制受感染个体的流动不会根除疾病,但限制易感个体的流动却会使疾病消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信