{"title":"Review perspective on advanced nutrachemicals and anterior cruciate ligament rehabilitation.","authors":"Dai Haojie, Sohini Mukherjee, Tanima Bhattacharya","doi":"10.1515/znc-2024-0169","DOIUrl":null,"url":null,"abstract":"<p><p>Anterior cruciate ligament (ACL) injuries are prevalent among athletes, necessitating surgical intervention followed by comprehensive rehabilitation. Recently, the integration of nutraceuticals - bioactive compounds from food sources - into rehabilitation protocols has shown promise in enhancing recovery outcomes. This review explores the potential benefits of various nutraceuticals, including omega-3 fatty acids, collagen supplements, vitamin D, glucosamine and chondroitin, curcumin, and branched-chain amino acids (BCAAs), in ACL rehabilitation. These nutraceuticals offer anti-inflammatory properties, support tissue repair, and improve joint and muscle health, which are critical during the rehabilitation process. Despite encouraging preclinical findings, there is a need for robust clinical trials to confirm their efficacy and establish optimal dosages and formulations. Personalized nutrition plans and interdisciplinary collaboration among healthcare providers are essential for optimizing patient care. This perspective underscores the potential of advanced nutraceuticals to revolutionize ACL rehabilitation, paving the way for faster and more effective recovery pathways.</p>","PeriodicalId":49344,"journal":{"name":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/znc-2024-0169","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Anterior cruciate ligament (ACL) injuries are prevalent among athletes, necessitating surgical intervention followed by comprehensive rehabilitation. Recently, the integration of nutraceuticals - bioactive compounds from food sources - into rehabilitation protocols has shown promise in enhancing recovery outcomes. This review explores the potential benefits of various nutraceuticals, including omega-3 fatty acids, collagen supplements, vitamin D, glucosamine and chondroitin, curcumin, and branched-chain amino acids (BCAAs), in ACL rehabilitation. These nutraceuticals offer anti-inflammatory properties, support tissue repair, and improve joint and muscle health, which are critical during the rehabilitation process. Despite encouraging preclinical findings, there is a need for robust clinical trials to confirm their efficacy and establish optimal dosages and formulations. Personalized nutrition plans and interdisciplinary collaboration among healthcare providers are essential for optimizing patient care. This perspective underscores the potential of advanced nutraceuticals to revolutionize ACL rehabilitation, paving the way for faster and more effective recovery pathways.
期刊介绍:
A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) is an international scientific journal and a community resource for the emerging field of natural and natural-like products. The journal publishes original research on the isolation (including structure elucidation), bio-chemical synthesis and bioactivities of natural products, their biochemistry, pharmacology, biotechnology, and their biological activity and innovative developed computational methods for predicting the structure and/or function of natural products. A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) welcomes research papers in fields on the chemistry-biology boundary which address scientific ideas and approaches to generate and understand natural compounds on a molecular level and/or use them to stimulate and manipulate biological processes.