P I Semenova, A V Panova, J V Sopova, O A Krasnova, V I Turilova, T K Yakovleva, K S Kulikova, D A Petrova, S L Kiselev, I E Neganova
{"title":"Generation of CRISPR/Cas9 modified human iPSC line with correction of heterozygous mutation in exon 6 of the CaSR gene.","authors":"P I Semenova, A V Panova, J V Sopova, O A Krasnova, V I Turilova, T K Yakovleva, K S Kulikova, D A Petrova, S L Kiselev, I E Neganova","doi":"10.1007/s13577-024-01135-1","DOIUrl":null,"url":null,"abstract":"<p><p>The calcium-sensing receptor (CaSR) gene encodes a cell membrane G protein-coupled receptor (GPCR) which has a key role in maintaining the extracellular Ca<sup>2+</sup> homeostasis. We aimed at correcting the compound heterozygous mutation in the 6th [c.1656delA, p.I554SfsX73] and 7th [c.2217 T > A, p.C739X] exons of the CASR gene which the original patient-derived iPSC line had. The mutation is associated with neonatal severe primary hyperparathyroidism of the patient. We generated and characterized a CRISP/Cas9-edited hiPSC line with the restored sequence in the sixth exon of the CASR gene, bearing only heterozygous mutation in the 7th exon. The results showed that the new genetically modified cell line has karyotype without abnormalities, typical hiPSCs morphology, characteristic expression of pluripotency markers, and ability to develop into three germ layers, and differentiates in chondrogenic, adipogenic, osteogenic directions. This new cell line will complement the existing pool of CaSR-mutated cell lines, a valuable resource for in-depth understanding of neonatal severe primary hyperparathyroidism. This will allow further exploration of the application of pharmacological drugs in the context of personalized medicine to correct Ca-homeostasis disorders.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-024-01135-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The calcium-sensing receptor (CaSR) gene encodes a cell membrane G protein-coupled receptor (GPCR) which has a key role in maintaining the extracellular Ca2+ homeostasis. We aimed at correcting the compound heterozygous mutation in the 6th [c.1656delA, p.I554SfsX73] and 7th [c.2217 T > A, p.C739X] exons of the CASR gene which the original patient-derived iPSC line had. The mutation is associated with neonatal severe primary hyperparathyroidism of the patient. We generated and characterized a CRISP/Cas9-edited hiPSC line with the restored sequence in the sixth exon of the CASR gene, bearing only heterozygous mutation in the 7th exon. The results showed that the new genetically modified cell line has karyotype without abnormalities, typical hiPSCs morphology, characteristic expression of pluripotency markers, and ability to develop into three germ layers, and differentiates in chondrogenic, adipogenic, osteogenic directions. This new cell line will complement the existing pool of CaSR-mutated cell lines, a valuable resource for in-depth understanding of neonatal severe primary hyperparathyroidism. This will allow further exploration of the application of pharmacological drugs in the context of personalized medicine to correct Ca-homeostasis disorders.