Ana Filipa R Cerqueira, Catarina Moreirinha, Mariana Raposo, Maria Teresa S R Gomes, Sara T Costa, Maria João Botelho, Alisa Rudnitskaya
{"title":"Paralytic Shellfish Toxin Extraction from Bivalve Meat for Analysis Using Potentiometric Chemical Sensors.","authors":"Ana Filipa R Cerqueira, Catarina Moreirinha, Mariana Raposo, Maria Teresa S R Gomes, Sara T Costa, Maria João Botelho, Alisa Rudnitskaya","doi":"10.3390/bios14100487","DOIUrl":null,"url":null,"abstract":"<p><p>A simple and reliable methodology for the detection of paralytic shellfish toxins (PSTs) in bivalve tissues using potentiometric chemical sensors was developed. Five methods of PST extraction from mussel and oyster tissues were evaluated, including the AOAC-recommended method, which served as the reference. The main objective was to minimize the matrix effect of the extracts on the sensors' responses and ensure efficient toxin recovery. Extraction procedures using acetic acid with heating and water yielded the highest responses from the potentiometric chemical sensors to PSTs. The highest recovery of PSTs from bivalve tissues was achieved with extraction using acetic acid and heating. Further extract purification, which is indispensable for liquid chromatography with fluorometric detection (LC-FLD) analysis, was found to be unnecessary for analysis with chemical sensors. While water extraction can also be used as a rapid and simple PST extraction method, the lower recoveries should be considered when interpreting the results. Further research is needed to identify the compounds remaining in the extracts that cause a decrease in sensor responses and to develop procedures for their elimination.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"14 10","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506007/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14100487","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A simple and reliable methodology for the detection of paralytic shellfish toxins (PSTs) in bivalve tissues using potentiometric chemical sensors was developed. Five methods of PST extraction from mussel and oyster tissues were evaluated, including the AOAC-recommended method, which served as the reference. The main objective was to minimize the matrix effect of the extracts on the sensors' responses and ensure efficient toxin recovery. Extraction procedures using acetic acid with heating and water yielded the highest responses from the potentiometric chemical sensors to PSTs. The highest recovery of PSTs from bivalve tissues was achieved with extraction using acetic acid and heating. Further extract purification, which is indispensable for liquid chromatography with fluorometric detection (LC-FLD) analysis, was found to be unnecessary for analysis with chemical sensors. While water extraction can also be used as a rapid and simple PST extraction method, the lower recoveries should be considered when interpreting the results. Further research is needed to identify the compounds remaining in the extracts that cause a decrease in sensor responses and to develop procedures for their elimination.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.