Microscale Flow Control and Droplet Generation Using Arduino-Based Pneumatically-Controlled Microfluidic Device.

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Woohyun Park, Se-Woon Choe, Minseok Kim
{"title":"Microscale Flow Control and Droplet Generation Using Arduino-Based Pneumatically-Controlled Microfluidic Device.","authors":"Woohyun Park, Se-Woon Choe, Minseok Kim","doi":"10.3390/bios14100469","DOIUrl":null,"url":null,"abstract":"<p><p>Microfluidics are crucial for managing small-volume analytical solutions for various applications, such as disease diagnostics, drug efficacy testing, chemical analysis, and water quality monitoring. The precise control of flow control devices can generate diverse flow patterns using pneumatic control with solenoid valves and a microcontroller. This system enables the active modulation of the pneumatic pressure through Arduino programming of the solenoid valves connected to the pressure source. Additionally, the incorporation of solenoid valve sets allows for multichannel control, enabling simultaneous creation and manipulation of various microflows at a low cost. The proposed microfluidic flow controller facilitates accurate flow regulation, especially through periodic flow modulation beneficial for droplet generation and continuous production of microdroplets of different sizes. Overall, we expect the proposed microfluidic flow controller to drive innovative advancements in technology and medicine owing to its engineering precision and versatility.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506217/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14100469","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microfluidics are crucial for managing small-volume analytical solutions for various applications, such as disease diagnostics, drug efficacy testing, chemical analysis, and water quality monitoring. The precise control of flow control devices can generate diverse flow patterns using pneumatic control with solenoid valves and a microcontroller. This system enables the active modulation of the pneumatic pressure through Arduino programming of the solenoid valves connected to the pressure source. Additionally, the incorporation of solenoid valve sets allows for multichannel control, enabling simultaneous creation and manipulation of various microflows at a low cost. The proposed microfluidic flow controller facilitates accurate flow regulation, especially through periodic flow modulation beneficial for droplet generation and continuous production of microdroplets of different sizes. Overall, we expect the proposed microfluidic flow controller to drive innovative advancements in technology and medicine owing to its engineering precision and versatility.

利用基于 Arduino 的气动控制微流控装置实现微尺度流量控制和液滴生成
微流控技术对于管理疾病诊断、药效测试、化学分析和水质监测等各种应用中的小容量分析解决方案至关重要。利用电磁阀和微控制器进行气动控制,对流量控制装置进行精确控制,可以产生多种流动模式。通过对连接到压力源的电磁阀进行 Arduino 编程,该系统能够主动调节气动压力。此外,电磁阀组的加入可实现多通道控制,从而以较低的成本同时创建和操纵各种微流。拟议的微流体流量控制器有利于精确调节流量,特别是通过周期性流量调节,有利于液滴的生成和不同大小微滴的连续生产。总之,由于其工程精度和多功能性,我们期待所提出的微流体流量控制器能够推动技术和医学的创新发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信