{"title":"Microscale Flow Control and Droplet Generation Using Arduino-Based Pneumatically-Controlled Microfluidic Device.","authors":"Woohyun Park, Se-Woon Choe, Minseok Kim","doi":"10.3390/bios14100469","DOIUrl":null,"url":null,"abstract":"<p><p>Microfluidics are crucial for managing small-volume analytical solutions for various applications, such as disease diagnostics, drug efficacy testing, chemical analysis, and water quality monitoring. The precise control of flow control devices can generate diverse flow patterns using pneumatic control with solenoid valves and a microcontroller. This system enables the active modulation of the pneumatic pressure through Arduino programming of the solenoid valves connected to the pressure source. Additionally, the incorporation of solenoid valve sets allows for multichannel control, enabling simultaneous creation and manipulation of various microflows at a low cost. The proposed microfluidic flow controller facilitates accurate flow regulation, especially through periodic flow modulation beneficial for droplet generation and continuous production of microdroplets of different sizes. Overall, we expect the proposed microfluidic flow controller to drive innovative advancements in technology and medicine owing to its engineering precision and versatility.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506217/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14100469","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microfluidics are crucial for managing small-volume analytical solutions for various applications, such as disease diagnostics, drug efficacy testing, chemical analysis, and water quality monitoring. The precise control of flow control devices can generate diverse flow patterns using pneumatic control with solenoid valves and a microcontroller. This system enables the active modulation of the pneumatic pressure through Arduino programming of the solenoid valves connected to the pressure source. Additionally, the incorporation of solenoid valve sets allows for multichannel control, enabling simultaneous creation and manipulation of various microflows at a low cost. The proposed microfluidic flow controller facilitates accurate flow regulation, especially through periodic flow modulation beneficial for droplet generation and continuous production of microdroplets of different sizes. Overall, we expect the proposed microfluidic flow controller to drive innovative advancements in technology and medicine owing to its engineering precision and versatility.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.