Diagnostic Accuracy of AI Algorithms in Aortic Stenosis Screening: A Systematic Review and Meta-Analysis.

IF 1.2 Q2 MEDICINE, GENERAL & INTERNAL
Apurva Popat, Babita Saini, Mitkumar Patel, Niran Seby, Sagar Patel, Samyuktha Harikrishnan, Hilloni Shah, Prutha Pathak, Anushka Dekhne, Udvas Sen, Sweta Yadav, Param Sharma, Shereif Rezkalla
{"title":"Diagnostic Accuracy of AI Algorithms in Aortic Stenosis Screening: A Systematic Review and Meta-Analysis.","authors":"Apurva Popat, Babita Saini, Mitkumar Patel, Niran Seby, Sagar Patel, Samyuktha Harikrishnan, Hilloni Shah, Prutha Pathak, Anushka Dekhne, Udvas Sen, Sweta Yadav, Param Sharma, Shereif Rezkalla","doi":"10.3121/cmr.2024.1934","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Aortic stenosis (AS) is frequently identified at an advanced stage after clinical symptoms appear. The aim of this systematic review and meta-analysis is to evaluate the diagnostic accuracy of artificial intelligence (AI) algorithms for AS screening.<b>Methods:</b> We conducted a thorough search of six databases. Several evaluation parameters, such as sensitivity, specificity, diagnostic odds ratio (DOR), negative likelihood ratio (NLR), positive likelihood ratio (PLR), and area under the curve (AUC) value were employed in the diagnostic meta-analysis of AI-based algorithms for AS screening. The AI algorithms utilized diverse data sources including electrocardiograms (ECG), chest radiographs, auscultation audio files, electronic stethoscope recordings, and cardio-mechanical signals from non-invasive wearable inertial sensors.<b>Results:</b> Of the 295 articles identified, 10 studies met the inclusion criteria. The pooled estimates for AI-based algorithms in diagnosing AS were as follows: sensitivity 0.83 (95% CI: 0.81-0.85), specificity 0.81 (95% CI: 0.79-0.84), PLR 4.78 (95% CI: 3.12-7.32), NLR 0.20 (95% CI: 0.13-0.28), and DOR 27.11 (95% CI: 14.40-51.05). The AUC value was 0.909 (95% CI: 0.889-0.929), indicating outstanding diagnostic accuracy. Subgroup and meta-regression analyses showed that continent, type of AS, data source, and type of AI-based method constituted sources of heterogeneity. Furthermore, we demonstrated proof of publication bias for DOR values analyzed using Egger's regression test (<i>P</i> = 0.002) and a funnel plot.<b>Conclusion:</b> Deep learning approaches represent highly sensitive, feasible, and scalable strategies to identify patients with moderate or severe AS.</p>","PeriodicalId":47429,"journal":{"name":"Clinical Medicine & Research","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495659/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Medicine & Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3121/cmr.2024.1934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Aortic stenosis (AS) is frequently identified at an advanced stage after clinical symptoms appear. The aim of this systematic review and meta-analysis is to evaluate the diagnostic accuracy of artificial intelligence (AI) algorithms for AS screening.Methods: We conducted a thorough search of six databases. Several evaluation parameters, such as sensitivity, specificity, diagnostic odds ratio (DOR), negative likelihood ratio (NLR), positive likelihood ratio (PLR), and area under the curve (AUC) value were employed in the diagnostic meta-analysis of AI-based algorithms for AS screening. The AI algorithms utilized diverse data sources including electrocardiograms (ECG), chest radiographs, auscultation audio files, electronic stethoscope recordings, and cardio-mechanical signals from non-invasive wearable inertial sensors.Results: Of the 295 articles identified, 10 studies met the inclusion criteria. The pooled estimates for AI-based algorithms in diagnosing AS were as follows: sensitivity 0.83 (95% CI: 0.81-0.85), specificity 0.81 (95% CI: 0.79-0.84), PLR 4.78 (95% CI: 3.12-7.32), NLR 0.20 (95% CI: 0.13-0.28), and DOR 27.11 (95% CI: 14.40-51.05). The AUC value was 0.909 (95% CI: 0.889-0.929), indicating outstanding diagnostic accuracy. Subgroup and meta-regression analyses showed that continent, type of AS, data source, and type of AI-based method constituted sources of heterogeneity. Furthermore, we demonstrated proof of publication bias for DOR values analyzed using Egger's regression test (P = 0.002) and a funnel plot.Conclusion: Deep learning approaches represent highly sensitive, feasible, and scalable strategies to identify patients with moderate or severe AS.

主动脉瓣狭窄筛查中人工智能算法的诊断准确性:系统回顾与元分析》。
背景:主动脉瓣狭窄(AS)往往在临床症状出现后的晚期才被发现。本系统综述和荟萃分析旨在评估人工智能(AI)算法对主动脉瓣狭窄筛查的诊断准确性:方法:我们对六个数据库进行了全面检索。在对基于人工智能的强直性脊柱炎筛查算法进行诊断荟萃分析时,我们采用了多个评估参数,如灵敏度、特异性、诊断几率比(DOR)、阴性似然比(NLR)、阳性似然比(PLR)和曲线下面积(AUC)值。人工智能算法采用了不同的数据源,包括心电图(ECG)、胸片、听诊音频文件、电子听诊器记录以及来自无创可穿戴惯性传感器的心脏机械信号:在确定的 295 篇文章中,有 10 项研究符合纳入标准。基于人工智能的算法诊断强直性脊柱炎的汇总估计值如下:灵敏度 0.83(95% CI:0.81-0.85),特异性 0.81(95% CI:0.79-0.84),PLR 4.78(95% CI:3.12-7.32),NLR 0.20(95% CI:0.13-0.28),DOR 27.11(95% CI:14.40-51.05)。AUC值为0.909(95% CI:0.889-0.929),显示了出色的诊断准确性。分组和元回归分析表明,大陆、强直性脊柱炎类型、数据来源和基于人工智能的方法类型构成了异质性的来源。此外,我们还证明了使用Egger回归检验(P = 0.002)和漏斗图分析的DOR值存在发表偏倚:深度学习方法是识别中度或重度强直性脊柱炎患者的高度敏感、可行和可扩展的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Clinical Medicine & Research
Clinical Medicine & Research MEDICINE, GENERAL & INTERNAL-
CiteScore
1.80
自引率
7.10%
发文量
25
期刊介绍: Clinical Medicine & Research is a peer reviewed publication of original scientific medical research that is relevant to a broad audience of medical researchers and healthcare professionals. Articles are published quarterly in the following topics: -Medicine -Clinical Research -Evidence-based Medicine -Preventive Medicine -Translational Medicine -Rural Health -Case Reports -Epidemiology -Basic science -History of Medicine -The Art of Medicine -Non-Clinical Aspects of Medicine & Science
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信