{"title":"Research progress on single-cell expression quantitative trait loci.","authors":"Xiao-Peng Xu, Xiao-Ying Fan","doi":"10.16288/j.yczz.24-162","DOIUrl":null,"url":null,"abstract":"<p><p>Expression quantitative trait loci (eQTL) represent genetic variants that regulate gene expression levels. eQTL analysis has become a crucial method for identifying the functional roles of disease-associated genetic variants in the post-genome-wide association study (GWAS) era, yielding numerous significant discoveries. Traditional eQTL analysis relies on whole-genome sequencing combined with bulk RNA-seq, which obscures gene expression differences between cells and thus fails to identify cell type- or state-dependent eQTL. This limitation makes it challenging to elucidate the roles of disease-associated genetic variants under specific conditions. In recent years, with the development and widespread application of single-cell RNA sequencing (scRNA-seq) technology, scRNA-seq-based eQTL (sc-eQTL) research has emerged as a focal point. The advantage of this approach lies in its ability to leverage the resolution and granularity of single-cell sequencing to uncover eQTL that are dependent on cell type, cell state, and cellular dynamics. This significantly enhances our ability to analyze genetic variants associated with gene expression. Consequently, it holds substantial significance for advancing our understanding of the formation of complex organs and the mechanisms underlying disease onset, progression, intervention, and treatment. This review comprehensively examines the recent advancements in sc-eQTL studies, focusing on their development, experimental design strategies, modeling approaches, and current challenges. The aim is to offer researchers novel perspectives for identifying disease-associated loci and elucidating gene regulatory mechanisms.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.24-162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Expression quantitative trait loci (eQTL) represent genetic variants that regulate gene expression levels. eQTL analysis has become a crucial method for identifying the functional roles of disease-associated genetic variants in the post-genome-wide association study (GWAS) era, yielding numerous significant discoveries. Traditional eQTL analysis relies on whole-genome sequencing combined with bulk RNA-seq, which obscures gene expression differences between cells and thus fails to identify cell type- or state-dependent eQTL. This limitation makes it challenging to elucidate the roles of disease-associated genetic variants under specific conditions. In recent years, with the development and widespread application of single-cell RNA sequencing (scRNA-seq) technology, scRNA-seq-based eQTL (sc-eQTL) research has emerged as a focal point. The advantage of this approach lies in its ability to leverage the resolution and granularity of single-cell sequencing to uncover eQTL that are dependent on cell type, cell state, and cellular dynamics. This significantly enhances our ability to analyze genetic variants associated with gene expression. Consequently, it holds substantial significance for advancing our understanding of the formation of complex organs and the mechanisms underlying disease onset, progression, intervention, and treatment. This review comprehensively examines the recent advancements in sc-eQTL studies, focusing on their development, experimental design strategies, modeling approaches, and current challenges. The aim is to offer researchers novel perspectives for identifying disease-associated loci and elucidating gene regulatory mechanisms.