{"title":"Machine learning applications in breast cancer survival and therapeutic outcome prediction based on multi-omic analysis.","authors":"Zi-Yi Zhang, Qi-Lin Wang, Jun-You Zhang, Ying-Ying Duan, Jia-Xin Liu, Zhao-Shuo Liu, Chun-Yan Li","doi":"10.16288/j.yczz.24-156","DOIUrl":null,"url":null,"abstract":"<p><p>The high heterogeneity within and between breast cancer patients complicates treatment determination and prognosis assessment. Treatment decision-making is influenced by various factors, such as tumor subtype, histological grade, and genotype, necessitating personalized treatment strategies. Prognostic outcomes vary significantly depending on patient-specific conditions. As a critical branch of artificial intelligence, machine learning efficiently handles large datasets and automates decision-making processes. The introduction of machine learning offers new solutions for breast cancer treatment selection and prognosis assessment. In the field of cancer therapy, traditional methods for predicting treatment and survival outcomes often rely on single or few biomarkers, limiting their ability to capture the complexity of biological processes comprehensively. Machine learning analyzes patients' multi-omic data and the intricate patterns of variations during cancer initiation and progression to predict patients' survival and treatment outcomes. Consequently, it facilitates the selection of appropriate therapeutic interventions to implement early intervention and improve treatment efficacy for patients. Here, we first introduce common machine learning methods, and then elaborate on the application of machine learning in the field of survival prediction and prognosis from two aspects: evaluating survival and predicting treatment outcomes for breast cancer patients. The aim is to provide breast cancer patients with precise treatment strategies to improve therapeutic outcomes and quality of life.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"46 10","pages":"820-832"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.24-156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
The high heterogeneity within and between breast cancer patients complicates treatment determination and prognosis assessment. Treatment decision-making is influenced by various factors, such as tumor subtype, histological grade, and genotype, necessitating personalized treatment strategies. Prognostic outcomes vary significantly depending on patient-specific conditions. As a critical branch of artificial intelligence, machine learning efficiently handles large datasets and automates decision-making processes. The introduction of machine learning offers new solutions for breast cancer treatment selection and prognosis assessment. In the field of cancer therapy, traditional methods for predicting treatment and survival outcomes often rely on single or few biomarkers, limiting their ability to capture the complexity of biological processes comprehensively. Machine learning analyzes patients' multi-omic data and the intricate patterns of variations during cancer initiation and progression to predict patients' survival and treatment outcomes. Consequently, it facilitates the selection of appropriate therapeutic interventions to implement early intervention and improve treatment efficacy for patients. Here, we first introduce common machine learning methods, and then elaborate on the application of machine learning in the field of survival prediction and prognosis from two aspects: evaluating survival and predicting treatment outcomes for breast cancer patients. The aim is to provide breast cancer patients with precise treatment strategies to improve therapeutic outcomes and quality of life.
期刊介绍:
Hereditas is a national academic journal sponsored by the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences and the Chinese Society of Genetics and published by Science Press. It is a Chinese core journal and a Chinese high-quality scientific journal. The journal mainly publishes innovative research papers in the fields of genetics, genomics, cell biology, developmental biology, biological evolution, genetic engineering and biotechnology; new technologies and new methods; monographs and reviews on hot issues in the discipline; academic debates and discussions; experience in genetics teaching; introductions to famous geneticists at home and abroad; genetic counseling; information on academic conferences at home and abroad, etc. Main columns: review, frontier focus, research report, technology and method, resources and platform, experimental operation guide, genetic resources, genetics teaching, scientific news, etc.