L J Liu, X W Chen, Y X Yu, M Zhang, P Li, H Y Zhao, Y X Sun, H Y Sun, Y M Sun, X Y Liu, H B Lin, P Shen, S Y Zhan, F Sun
{"title":"[Development of a prediction model for the incidence of type 2 diabetic kidney disease and its application based on a regional health data platform].","authors":"L J Liu, X W Chen, Y X Yu, M Zhang, P Li, H Y Zhao, Y X Sun, H Y Sun, Y M Sun, X Y Liu, H B Lin, P Shen, S Y Zhan, F Sun","doi":"10.3760/cma.j.cn112338-20240117-00024","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> To construct a risk prediction model for diabetes kidney disease (DKD). <b>Methods:</b> Patients newly diagnosed with type 2 diabetes mellitus (T2DM) between January 1, 2015, and December 31, 2022, were selected as study subjects from the Yinzhou Regional Health Information Platform in Ningbo City. The Lasso method was used to screen the risk factors, and the DKD risk prediction model was established using Cox proportional hazard regression models. Bootstrap 500 resampling was applied for internal validation. <b>Results:</b> The study included 49 706 subjects, with an median (<i>Q</i><sub>1</sub>, <i>Q</i><sub>3</sub>) age of 60.00 (50.00, 68.00) years old, and 55% were male. A total of 4 405 subjects eventually developed DKD. Age at first diagnosis of T2DM, BMI, education level, fasting plasma glucose, glycated hemoglobin A1c, urinary albumin, past medical history (hyperuricemia, rheumatic diseases), triglycerides, and estimated glomerular filtration rate were included in the final model. The final model's C-index was 0.653, with an average of 0.654 after Bootstrap correction. The final model's area under the receiver operating characteristic curve for predicting 4-year, 5-year, and 6-year was 0.657, 0.659, and 0.664, respectively. The calibration curve was closely aligned with the ideal curve. <b>Conclusions:</b> This study constructed a DKD risk prediction model for newly diagnosed T2DM patients based on real-world data that is simple, easy to use, and highly practical. It provides a reliable basis for screening high-risk groups for DKD.</p>","PeriodicalId":23968,"journal":{"name":"中华流行病学杂志","volume":"45 10","pages":"1426-1432"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中华流行病学杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3760/cma.j.cn112338-20240117-00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To construct a risk prediction model for diabetes kidney disease (DKD). Methods: Patients newly diagnosed with type 2 diabetes mellitus (T2DM) between January 1, 2015, and December 31, 2022, were selected as study subjects from the Yinzhou Regional Health Information Platform in Ningbo City. The Lasso method was used to screen the risk factors, and the DKD risk prediction model was established using Cox proportional hazard regression models. Bootstrap 500 resampling was applied for internal validation. Results: The study included 49 706 subjects, with an median (Q1, Q3) age of 60.00 (50.00, 68.00) years old, and 55% were male. A total of 4 405 subjects eventually developed DKD. Age at first diagnosis of T2DM, BMI, education level, fasting plasma glucose, glycated hemoglobin A1c, urinary albumin, past medical history (hyperuricemia, rheumatic diseases), triglycerides, and estimated glomerular filtration rate were included in the final model. The final model's C-index was 0.653, with an average of 0.654 after Bootstrap correction. The final model's area under the receiver operating characteristic curve for predicting 4-year, 5-year, and 6-year was 0.657, 0.659, and 0.664, respectively. The calibration curve was closely aligned with the ideal curve. Conclusions: This study constructed a DKD risk prediction model for newly diagnosed T2DM patients based on real-world data that is simple, easy to use, and highly practical. It provides a reliable basis for screening high-risk groups for DKD.
期刊介绍:
Chinese Journal of Epidemiology, established in 1981, is an advanced academic periodical in epidemiology and related disciplines in China, which, according to the principle of integrating theory with practice, mainly reports the major progress in epidemiological research. The columns of the journal include commentary, expert forum, original article, field investigation, disease surveillance, laboratory research, clinical epidemiology, basic theory or method and review, etc.
The journal is included by more than ten major biomedical databases and index systems worldwide, such as been indexed in Scopus, PubMed/MEDLINE, PubMed Central (PMC), Europe PubMed Central, Embase, Chemical Abstract, Chinese Science and Technology Paper and Citation Database (CSTPCD), Chinese core journal essentials overview, Chinese Science Citation Database (CSCD) core database, Chinese Biological Medical Disc (CBMdisc), and Chinese Medical Citation Index (CMCI), etc. It is one of the core academic journals and carefully selected core journals in preventive and basic medicine in China.