Lifeng Gao, Yuguang Meng, Xiaowen Luo, Jiangyuan Chen, Xuxia Wang
{"title":"ZnO Nanoparticles-Induced MRI Alterations to the Rat Olfactory Epithelium and Olfactory Bulb after Intranasal Instillation.","authors":"Lifeng Gao, Yuguang Meng, Xiaowen Luo, Jiangyuan Chen, Xuxia Wang","doi":"10.3390/toxics12100724","DOIUrl":null,"url":null,"abstract":"<p><p>Since zinc oxide (ZnO) nanoparticles (NPs) have been widely applied, the nano community and the general public have paid great attention to the toxicity of ZnO NPs. We detected 20-nm ZnO NPs biotoxicity following nasal exposure utilizing the non-invasive and real-time magnetic resonance imaging (MRI) technique. MR images were scanned in the rat olfactory epithelium (OE) and olfactory bulb (OB) on a 4.7 T scanner following the treatment (as early as 1 day and up to 21 days after), and the histological changes were evaluated. The influence of the size of the ZnO NPs and chemical components was also investigated. Our study revealed that 20-nm ZnO NPs induced obvious structural disruption and inflammation in the OE and OB at the acute stage. The results suggest that the real-time and non-invasive advantages of MRI allow it to observe and assess, directly and dynamically, the potential toxicity of long-term exposure to ZnO NPs in the olfactory system. These findings indicate the size-dependent toxicity of ZnO NPs with respect to the olfactory bulb. Further study is needed to reveal the mechanism behind ZnO NPs' toxicity.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"12 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511357/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12100724","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Since zinc oxide (ZnO) nanoparticles (NPs) have been widely applied, the nano community and the general public have paid great attention to the toxicity of ZnO NPs. We detected 20-nm ZnO NPs biotoxicity following nasal exposure utilizing the non-invasive and real-time magnetic resonance imaging (MRI) technique. MR images were scanned in the rat olfactory epithelium (OE) and olfactory bulb (OB) on a 4.7 T scanner following the treatment (as early as 1 day and up to 21 days after), and the histological changes were evaluated. The influence of the size of the ZnO NPs and chemical components was also investigated. Our study revealed that 20-nm ZnO NPs induced obvious structural disruption and inflammation in the OE and OB at the acute stage. The results suggest that the real-time and non-invasive advantages of MRI allow it to observe and assess, directly and dynamically, the potential toxicity of long-term exposure to ZnO NPs in the olfactory system. These findings indicate the size-dependent toxicity of ZnO NPs with respect to the olfactory bulb. Further study is needed to reveal the mechanism behind ZnO NPs' toxicity.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
The Journal accepts papers describing work that furthers our understanding of the exposure, effects, and risks of chemicals and materials in humans and the natural environment as well as approaches to assess and/or manage the toxicological and ecotoxicological risks of chemicals and materials. The journal covers a wide range of toxic substances, including metals, pesticides, pharmaceuticals, biocides, nanomaterials, and polymers such as micro- and mesoplastics. Toxics accepts papers covering:
The occurrence, transport, and fate of chemicals and materials in different systems (e.g., food, air, water, soil);
Exposure of humans and the environment to toxic chemicals and materials as well as modelling and experimental approaches for characterizing the exposure in, e.g., water, air, soil, food, and consumer products;
Uptake, metabolism, and effects of chemicals and materials in a wide range of systems including in-vitro toxicological assays, aquatic and terrestrial organisms and ecosystems, model mammalian systems, and humans;
Approaches to assess the risks of chemicals and materials to humans and the environment;
Methodologies to eliminate or reduce the exposure of humans and the environment to toxic chemicals and materials.