Oxidative Dissolution and the Aggregation of Silver Nanoparticles in Drinking and Natural Waters: The Influence of the Medium on the Process Development.
{"title":"Oxidative Dissolution and the Aggregation of Silver Nanoparticles in Drinking and Natural Waters: The Influence of the Medium on the Process Development.","authors":"Vadim A Ershov, Boris G Ershov","doi":"10.3390/toxics12100757","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, there are quite a few data on the ways silver nanoparticles get into the aquatic environment, on their subsequent dissolution in water, and on the release of toxic Ag<sup>+</sup> ions. Differences in the experimental conditions hinder the determination of the basic regularities of this process. In this study, the stages of oxidative dissolution of AgNPs were studied, starting from the formation of silver hydrosol in deaerated solution, the reaction of silver with oxygen and with drinking and natural waters, the analysis of intermediate species of the oxidized colloidal particles, and the subsequent particle aggregation and precipitation, by optical spectroscopy, DLS, TEM, STEM, and EDX. In the presence of oxygen, silver nanoparticles undergo oxidative dissolution, which gives Ag<sup>+</sup> ions and results in the subsequent aggregation of nanoparticles. The carbonate hydrosol loses stability when mixed with waters of various origin. This is due to the destruction of the electric double layer, which is caused by an increase in the solution's ionic strength and the neutralization of the charge of the metal core. The environmental hazard of the silver nanoparticle hydrosol would noticeably change and/or decrease when the nanoparticles get into natural waters because of their fast precipitation and because the major part of released Ag<sup>+</sup> ions form poorly soluble salts with ions present in water.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"12 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510811/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12100757","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, there are quite a few data on the ways silver nanoparticles get into the aquatic environment, on their subsequent dissolution in water, and on the release of toxic Ag+ ions. Differences in the experimental conditions hinder the determination of the basic regularities of this process. In this study, the stages of oxidative dissolution of AgNPs were studied, starting from the formation of silver hydrosol in deaerated solution, the reaction of silver with oxygen and with drinking and natural waters, the analysis of intermediate species of the oxidized colloidal particles, and the subsequent particle aggregation and precipitation, by optical spectroscopy, DLS, TEM, STEM, and EDX. In the presence of oxygen, silver nanoparticles undergo oxidative dissolution, which gives Ag+ ions and results in the subsequent aggregation of nanoparticles. The carbonate hydrosol loses stability when mixed with waters of various origin. This is due to the destruction of the electric double layer, which is caused by an increase in the solution's ionic strength and the neutralization of the charge of the metal core. The environmental hazard of the silver nanoparticle hydrosol would noticeably change and/or decrease when the nanoparticles get into natural waters because of their fast precipitation and because the major part of released Ag+ ions form poorly soluble salts with ions present in water.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.