Degradation of Atrazine in Water by Dielectric Barrier Discharge Combined with Periodate Oxidation: Enhanced Performance, Degradation Pathways, and Toxicity Assessment.

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Toxics Pub Date : 2024-10-14 DOI:10.3390/toxics12100746
Han Zhang, Jinping Duan, Pengcheng Luo, Luxiang Zhu, Yanan Liu
{"title":"Degradation of Atrazine in Water by Dielectric Barrier Discharge Combined with Periodate Oxidation: Enhanced Performance, Degradation Pathways, and Toxicity Assessment.","authors":"Han Zhang, Jinping Duan, Pengcheng Luo, Luxiang Zhu, Yanan Liu","doi":"10.3390/toxics12100746","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread occurrence of atrazine (ATZ) in water environments presents a considerable risk to human health and ecosystems. Herein, the performance of dielectric barrier discharge integrated with periodate (DBD/PI) for ATZ decomposition was evaluated. Results demonstrated that the DBD/PI system improved ATZ decomposition efficiency by 18.2-22.5% compared to the sole DBD system. After 10 min treatment, the decomposition efficiency attained 82.4% at a discharge power of 68 W, a PI dosage of 0.02 mM, and an initial ATZ concentration of 10 mg/L. As the PI dosage increased, the decomposition efficiency exhibited a trend of initially increasing, followed by a decrease. Acidic conditions were more favorable for ATZ removal compared to alkaline and neutral conditions. Electron paramagnetic resonance (EPR) was adopted for characterizing the active species produced in the DBD/PI system, and quenching experiments revealed their influence on ATZ decomposition following a sequence of <sup>1</sup>O<sub>2</sub> > O<sub>2</sub><sup>-</sup>• > IO<sub>3</sub>• > OH•. The decomposition pathways were proposed based on the theoretical calculations and intermediate identification. Additionally, the toxic effects of ATZ and its intermediates were assessed. This study demonstrates that the DBD/PI treatment represents an effective strategy for the decomposition of ATZ in aquatic environments.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"12 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511528/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12100746","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread occurrence of atrazine (ATZ) in water environments presents a considerable risk to human health and ecosystems. Herein, the performance of dielectric barrier discharge integrated with periodate (DBD/PI) for ATZ decomposition was evaluated. Results demonstrated that the DBD/PI system improved ATZ decomposition efficiency by 18.2-22.5% compared to the sole DBD system. After 10 min treatment, the decomposition efficiency attained 82.4% at a discharge power of 68 W, a PI dosage of 0.02 mM, and an initial ATZ concentration of 10 mg/L. As the PI dosage increased, the decomposition efficiency exhibited a trend of initially increasing, followed by a decrease. Acidic conditions were more favorable for ATZ removal compared to alkaline and neutral conditions. Electron paramagnetic resonance (EPR) was adopted for characterizing the active species produced in the DBD/PI system, and quenching experiments revealed their influence on ATZ decomposition following a sequence of 1O2 > O2-• > IO3• > OH•. The decomposition pathways were proposed based on the theoretical calculations and intermediate identification. Additionally, the toxic effects of ATZ and its intermediates were assessed. This study demonstrates that the DBD/PI treatment represents an effective strategy for the decomposition of ATZ in aquatic environments.

电介质屏障放电结合高碘酸盐氧化法降解水中的阿特拉津:增强性能、降解途径和毒性评估。
水环境中广泛存在的阿特拉津(ATZ)对人类健康和生态系统构成了相当大的风险。在此,研究人员评估了介质阻挡放电与高碘酸盐(DBD/PI)结合用于分解阿特拉津的性能。结果表明,与单纯的 DBD 系统相比,DBD/PI 系统的 ATZ 分解效率提高了 18.2-22.5%。在放电功率为 68 W、PI 剂量为 0.02 mM、ATZ 初始浓度为 10 mg/L 的条件下,处理 10 分钟后,分解效率达到 82.4%。随着 PI 用量的增加,分解效率呈现出先上升后下降的趋势。与碱性和中性条件相比,酸性条件更有利于 ATZ 的去除。电子顺磁共振(EPR)被用来表征 DBD/PI 系统中产生的活性物种,淬灭实验揭示了它们对 ATZ 分解的影响,其顺序为 1O2 > O2-- > IO3- > OH-。根据理论计算和中间体鉴定,提出了分解途径。此外,还评估了 ATZ 及其中间产物的毒性效应。这项研究表明,DBD/PI 处理是在水生环境中分解 ATZ 的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxics
Toxics Chemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍: The Journal accepts papers describing work that furthers our understanding of the exposure, effects, and risks of chemicals and materials in humans and the natural environment as well as approaches to assess and/or manage the toxicological and ecotoxicological risks of chemicals and materials. The journal covers a wide range of toxic substances, including metals, pesticides, pharmaceuticals, biocides, nanomaterials, and polymers such as micro- and mesoplastics. Toxics accepts papers covering: The occurrence, transport, and fate of chemicals and materials in different systems (e.g., food, air, water, soil); Exposure of humans and the environment to toxic chemicals and materials as well as modelling and experimental approaches for characterizing the exposure in, e.g., water, air, soil, food, and consumer products; Uptake, metabolism, and effects of chemicals and materials in a wide range of systems including in-vitro toxicological assays, aquatic and terrestrial organisms and ecosystems, model mammalian systems, and humans; Approaches to assess the risks of chemicals and materials to humans and the environment; Methodologies to eliminate or reduce the exposure of humans and the environment to toxic chemicals and materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信