{"title":"A Long-Term Assessment of Nitrogen Removal Performance and Microecosystem Evolution in Bioretention Columns Modified with Sponge Iron.","authors":"Zizeng Lin, Qinghuan Shi, Qiumei He","doi":"10.3390/toxics12100727","DOIUrl":null,"url":null,"abstract":"<p><p>The nitrogen removal performance of bioretention urgently needs to be improved, and sponge iron has great potential to address this challenge. This study reported the results of a long-term investigation on bioretention columns improved by sponge iron, examining the durability of sponge iron from nitrogen removal performance, sponge iron properties, and the evolution of biological elements. The results showed that after 9 months of continuous operation, the removal rates of ammonia nitrogen (NH<sub>4</sub><sup>+</sup>-N), nitrate nitrogen (NO<sub>3</sub><sup>-</sup>-N), and total nitrogen (TN) in the bioretention columns with an appropriate proportion of sponge iron could reach 80% (some even over 90%). However, the long-term stress of sponge iron exposure, combined with the cumulative effect of pollutants, might lead to the excessive accumulation of reactive oxygen species (ROS) in plants, thereby posing risks of diminished chlorophyll content and enzyme activity. Simultaneously, the extended exposure could also have detrimental effects on microbial diversity and the abundance of dominant bacteria such as <i>Proteobacteria</i> and <i>Sphingorhabdus</i>. Therefore, it is necessary to select plant species and functional genes that demonstrate high adaptability to iron-induced stress.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511418/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12100727","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The nitrogen removal performance of bioretention urgently needs to be improved, and sponge iron has great potential to address this challenge. This study reported the results of a long-term investigation on bioretention columns improved by sponge iron, examining the durability of sponge iron from nitrogen removal performance, sponge iron properties, and the evolution of biological elements. The results showed that after 9 months of continuous operation, the removal rates of ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N), and total nitrogen (TN) in the bioretention columns with an appropriate proportion of sponge iron could reach 80% (some even over 90%). However, the long-term stress of sponge iron exposure, combined with the cumulative effect of pollutants, might lead to the excessive accumulation of reactive oxygen species (ROS) in plants, thereby posing risks of diminished chlorophyll content and enzyme activity. Simultaneously, the extended exposure could also have detrimental effects on microbial diversity and the abundance of dominant bacteria such as Proteobacteria and Sphingorhabdus. Therefore, it is necessary to select plant species and functional genes that demonstrate high adaptability to iron-induced stress.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
The Journal accepts papers describing work that furthers our understanding of the exposure, effects, and risks of chemicals and materials in humans and the natural environment as well as approaches to assess and/or manage the toxicological and ecotoxicological risks of chemicals and materials. The journal covers a wide range of toxic substances, including metals, pesticides, pharmaceuticals, biocides, nanomaterials, and polymers such as micro- and mesoplastics. Toxics accepts papers covering:
The occurrence, transport, and fate of chemicals and materials in different systems (e.g., food, air, water, soil);
Exposure of humans and the environment to toxic chemicals and materials as well as modelling and experimental approaches for characterizing the exposure in, e.g., water, air, soil, food, and consumer products;
Uptake, metabolism, and effects of chemicals and materials in a wide range of systems including in-vitro toxicological assays, aquatic and terrestrial organisms and ecosystems, model mammalian systems, and humans;
Approaches to assess the risks of chemicals and materials to humans and the environment;
Methodologies to eliminate or reduce the exposure of humans and the environment to toxic chemicals and materials.