Enhancing Europium Adsorption Effect of Fe on Several Geological Materials by Applying XANES, EXAFS, and Wavelet Transform Techniques.

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Toxics Pub Date : 2024-09-28 DOI:10.3390/toxics12100706
Chi-Wen Hsieh, Zih-Shiuan Chiou, Chuan-Pin Lee, Shih-Chin Tsai, Wei-Hsiang Tseng, Yu-Hung Wang, Yi-Ting Chen, Chein-Hsieng Kuo, Hui-Min Chiu
{"title":"Enhancing Europium Adsorption Effect of Fe on Several Geological Materials by Applying XANES, EXAFS, and Wavelet Transform Techniques.","authors":"Chi-Wen Hsieh, Zih-Shiuan Chiou, Chuan-Pin Lee, Shih-Chin Tsai, Wei-Hsiang Tseng, Yu-Hung Wang, Yi-Ting Chen, Chein-Hsieng Kuo, Hui-Min Chiu","doi":"10.3390/toxics12100706","DOIUrl":null,"url":null,"abstract":"<p><p>This study conducted adsorption experiments using Europium (Eu(III)) on geological materials collected from Taiwan. Batch tests on argillite, basalt, granite, and biotite showed that argillite and basalt exhibited strong adsorption reactions with Eu. X-ray diffraction (XRD) analysis also clearly indicated differences before and after adsorption. By combining X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and wavelet transform (WT) analyses, we observed that the Fe<sub>2</sub>O<sub>3</sub> content significantly affects the Eu-Fe distance in the inner-sphere layer during the Eu adsorption process. The wavelet transform analysis for two-dimensional information helps differentiate two distances of Eu-O, which are difficult to analyze, with hydrated outer-sphere Eu-O distances ranging from 2.42 to 2.52 Å and inner-sphere Eu-O distances from 2.27 to 2.32 Å. The EXAFS results for Fe<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub> in argillite and basalt reveal different adsorption mechanisms. Fe<sub>2</sub>O<sub>3</sub> exhibits inner-sphere surface complexation in the order of basalt, argillite, and granite, <b>while</b> SiO<sub>2</sub> forms outer-sphere ion exchange with basalt and argillite. Wavelet transform analysis also highlights the differences among these materials.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"12 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510908/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12100706","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study conducted adsorption experiments using Europium (Eu(III)) on geological materials collected from Taiwan. Batch tests on argillite, basalt, granite, and biotite showed that argillite and basalt exhibited strong adsorption reactions with Eu. X-ray diffraction (XRD) analysis also clearly indicated differences before and after adsorption. By combining X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and wavelet transform (WT) analyses, we observed that the Fe2O3 content significantly affects the Eu-Fe distance in the inner-sphere layer during the Eu adsorption process. The wavelet transform analysis for two-dimensional information helps differentiate two distances of Eu-O, which are difficult to analyze, with hydrated outer-sphere Eu-O distances ranging from 2.42 to 2.52 Å and inner-sphere Eu-O distances from 2.27 to 2.32 Å. The EXAFS results for Fe2O3 and SiO2 in argillite and basalt reveal different adsorption mechanisms. Fe2O3 exhibits inner-sphere surface complexation in the order of basalt, argillite, and granite, while SiO2 forms outer-sphere ion exchange with basalt and argillite. Wavelet transform analysis also highlights the differences among these materials.

应用 XANES、EXAFS 和小波变换技术增强铁在几种地质材料上的铕吸附效应
本研究在台湾采集的地质材料上进行了铕(Eu(III))的吸附实验。对辉绿岩、玄武岩、花岗岩和生物岩进行的批量测试表明,辉绿岩和玄武岩对 Eu 具有强烈的吸附反应。X 射线衍射(XRD)分析也清楚地表明了吸附前后的差异。通过结合 X 射线吸收近边结构(XANES)、扩展 X 射线吸收精细结构(EXAFS)和小波变换(WT)分析,我们观察到在吸附 Eu 的过程中,Fe2O3 的含量会显著影响内球层中 Eu-Fe 的距离。针对二维信息的小波变换分析有助于区分难以分析的两种 Eu-O 距离,水合外球层 Eu-O 距离为 2.42 至 2.52 Å,内球层 Eu-O 距离为 2.27 至 2.32 Å。Fe2O3 依次与玄武岩、闪长岩和花岗岩形成内球表面络合,而 SiO2 则与玄武岩和闪长岩形成外球离子交换。小波变换分析也凸显了这些材料之间的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxics
Toxics Chemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍: The Journal accepts papers describing work that furthers our understanding of the exposure, effects, and risks of chemicals and materials in humans and the natural environment as well as approaches to assess and/or manage the toxicological and ecotoxicological risks of chemicals and materials. The journal covers a wide range of toxic substances, including metals, pesticides, pharmaceuticals, biocides, nanomaterials, and polymers such as micro- and mesoplastics. Toxics accepts papers covering: The occurrence, transport, and fate of chemicals and materials in different systems (e.g., food, air, water, soil); Exposure of humans and the environment to toxic chemicals and materials as well as modelling and experimental approaches for characterizing the exposure in, e.g., water, air, soil, food, and consumer products; Uptake, metabolism, and effects of chemicals and materials in a wide range of systems including in-vitro toxicological assays, aquatic and terrestrial organisms and ecosystems, model mammalian systems, and humans; Approaches to assess the risks of chemicals and materials to humans and the environment; Methodologies to eliminate or reduce the exposure of humans and the environment to toxic chemicals and materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信