{"title":"Genome-wide mapping of quantitative trait loci conferring resistance to stripe rust in spring wheat line PI 660072.","authors":"Xinli Zhou, Yuqi Wang, Yuqi Luo, Jie Shuai, Guoyun Jia, Hongyang Chen, Liangqi Zhang, Hao Chen, Xin Li, Kebing Huang, Suizhuang Yang, Meinan Wang, Yong Ren, Gang Li, Xianming Chen","doi":"10.1007/s00122-024-04760-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Two major QTL for resistance to stripe rust were mapped on chromosome 2BL and 4BL in spring wheat PI 660072, and their KASP markers were developed. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat worldwide. Identifying resistance genes is crucial for developing resistant cultivars to control the disease. Spring wheat PI 660072 (Triticum aestivum) has been identified to possess both adult-plant resistance (APR) and all-stage resistance (ASR) to stripe rust. To elucidate the genetic basis of the resistance in PI 660072, a mapping population consisting of 211 F<sub>5</sub><sup>-</sup>F<sub>7</sub> recombinant-inbred lines (RILs) was developed from a cross of PI 660072 with susceptible spring wheat Avocet S. The mapping population was phenotyped for stripe rust responses across five field environments from 2020 to 2022 and genotyped using the 15 K SNP (single nucleotide polymorphism) array to map stripe rust resistance loci. The mapping population was also tested at the seedling stage with predominant Chinese Pst races CYR31, CYR32, CYR34 and PST-YX1-3-1 in the greenhouse. Stripe rust resistance genes were identified using the quantitative trait locus (QTL) mapping approach. Two QTL were identified with QYrPI660072.swust-2BL mapped on the long arm of chromosome 2B for ASR and QYrPI660072.swust-4BL on the long arm of chromosome 4B for APR. To facilitate marker-assisted selection breeding, Kompetitive allele specific PCR (KASP) markers, KASP-1269 for QYrPI660072.swust-2BL and KASP-3209 for QYrPI660072.swust-4BL, were developed. These markers could be used to introgress the effective resistance QTL into new wheat cultivars.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 11","pages":"255"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04760-4","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: Two major QTL for resistance to stripe rust were mapped on chromosome 2BL and 4BL in spring wheat PI 660072, and their KASP markers were developed. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat worldwide. Identifying resistance genes is crucial for developing resistant cultivars to control the disease. Spring wheat PI 660072 (Triticum aestivum) has been identified to possess both adult-plant resistance (APR) and all-stage resistance (ASR) to stripe rust. To elucidate the genetic basis of the resistance in PI 660072, a mapping population consisting of 211 F5-F7 recombinant-inbred lines (RILs) was developed from a cross of PI 660072 with susceptible spring wheat Avocet S. The mapping population was phenotyped for stripe rust responses across five field environments from 2020 to 2022 and genotyped using the 15 K SNP (single nucleotide polymorphism) array to map stripe rust resistance loci. The mapping population was also tested at the seedling stage with predominant Chinese Pst races CYR31, CYR32, CYR34 and PST-YX1-3-1 in the greenhouse. Stripe rust resistance genes were identified using the quantitative trait locus (QTL) mapping approach. Two QTL were identified with QYrPI660072.swust-2BL mapped on the long arm of chromosome 2B for ASR and QYrPI660072.swust-4BL on the long arm of chromosome 4B for APR. To facilitate marker-assisted selection breeding, Kompetitive allele specific PCR (KASP) markers, KASP-1269 for QYrPI660072.swust-2BL and KASP-3209 for QYrPI660072.swust-4BL, were developed. These markers could be used to introgress the effective resistance QTL into new wheat cultivars.
期刊介绍:
Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.