Comparison of statistical methods for the analysis of patient-reported outcomes in randomised controlled trials: A simulation study.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Statistical Methods in Medical Research Pub Date : 2024-11-01 Epub Date: 2024-10-23 DOI:10.1177/09622802241275361
Yirui Qian, Stephen J Walters, Richard M Jacques, Laura Flight
{"title":"Comparison of statistical methods for the analysis of patient-reported outcomes in randomised controlled trials: A simulation study.","authors":"Yirui Qian, Stephen J Walters, Richard M Jacques, Laura Flight","doi":"10.1177/09622802241275361","DOIUrl":null,"url":null,"abstract":"<p><p>Patient-reported outcomes (PROs) that aim to measure patients' subjective attitudes towards their health or health-related conditions in various fields have been increasingly used in randomised controlled trials (RCTs). PRO data is likely to be bounded, discrete, and skewed. Although various statistical methods are available for the analysis of PROs in RCT settings, there is no consensus on what statistical methods are the most appropriate for use. This study aims to use simulation methods to compare the performance (in terms of bias, empirical standard error, coverage of the confidence interval, Type I error, and power) of three different statistical methods, multiple linear regression (MLR), Tobit regression (Tobit), and median regression (Median), to estimate a range of predefined treatment effects for a PRO in a two-arm balanced RCT. We assumed there was an underlying latent continuous outcome that the PRO was measuring, but the actual scores observed were equally spaced and discrete. This study found that MLR was associated with little bias of the estimated treatment effect, small standard errors, and appropriate coverage of the confidence interval under most scenarios. Tobit performed worse than MLR for analysing PROs with a small number of levels, but it had better performance when analysing PROs with more discrete values. Median showed extremely large bias and errors, associated with low power and coverage for most scenarios especially when the number of possible discrete values was small. We recommend MLR as a simple and universal statistical method for the analysis of PROs in RCT settings.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"1920-1938"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577693/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241275361","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Patient-reported outcomes (PROs) that aim to measure patients' subjective attitudes towards their health or health-related conditions in various fields have been increasingly used in randomised controlled trials (RCTs). PRO data is likely to be bounded, discrete, and skewed. Although various statistical methods are available for the analysis of PROs in RCT settings, there is no consensus on what statistical methods are the most appropriate for use. This study aims to use simulation methods to compare the performance (in terms of bias, empirical standard error, coverage of the confidence interval, Type I error, and power) of three different statistical methods, multiple linear regression (MLR), Tobit regression (Tobit), and median regression (Median), to estimate a range of predefined treatment effects for a PRO in a two-arm balanced RCT. We assumed there was an underlying latent continuous outcome that the PRO was measuring, but the actual scores observed were equally spaced and discrete. This study found that MLR was associated with little bias of the estimated treatment effect, small standard errors, and appropriate coverage of the confidence interval under most scenarios. Tobit performed worse than MLR for analysing PROs with a small number of levels, but it had better performance when analysing PROs with more discrete values. Median showed extremely large bias and errors, associated with low power and coverage for most scenarios especially when the number of possible discrete values was small. We recommend MLR as a simple and universal statistical method for the analysis of PROs in RCT settings.

随机对照试验中患者报告结果分析统计方法的比较:模拟研究。
患者报告结果(PROs)旨在衡量患者对其健康或各领域健康相关状况的主观态度,越来越多地被用于随机对照试验(RCTs)中。PRO数据可能是有边界的、离散的和倾斜的。虽然有各种统计方法可用于分析 RCT 环境中的 PROs,但对于什么统计方法最适合使用,目前还没有达成共识。本研究旨在使用模拟方法比较三种不同统计方法(多元线性回归 (MLR)、托比特回归 (Tobit) 和中位回归 (Median))的性能(偏差、经验标准误差、置信区间覆盖率、I 类误差和功率),以估计双臂平衡 RCT 中 PRO 的预定义治疗效果范围。我们假定PRO测量的是潜在的连续结果,但观察到的实际分数是等距和离散的。这项研究发现,在大多数情况下,MLR 与估计治疗效果的偏差小、标准误差小以及置信区间的适当覆盖率有关。在分析具有少量水平的 PRO 时,Tobit 的表现不如 MLR,但在分析具有更多离散值的 PRO 时,Tobit 的表现更好。中位数显示出极大的偏差和误差,在大多数情况下与低功率和低覆盖率有关,尤其是当可能的离散值较少时。我们建议将 MLR 作为一种简单、通用的统计方法,用于 RCT 环境中的 PROs 分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信