Charge-transfer dipole low-frequency vibronic excitation at single-molecular scale

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Cancan Lou, Yurou Guan, Xingxia Cui, Yafei Li, Xieyu Zhou, Qing Yuan, Guangqiang Mei, Chengxiang Jiao, Kai Huang, Xuefeng Hou, Limin Cao, Wei Ji, Dino Novko, Hrvoje Petek, Min Feng
{"title":"Charge-transfer dipole low-frequency vibronic excitation at single-molecular scale","authors":"Cancan Lou,&nbsp;Yurou Guan,&nbsp;Xingxia Cui,&nbsp;Yafei Li,&nbsp;Xieyu Zhou,&nbsp;Qing Yuan,&nbsp;Guangqiang Mei,&nbsp;Chengxiang Jiao,&nbsp;Kai Huang,&nbsp;Xuefeng Hou,&nbsp;Limin Cao,&nbsp;Wei Ji,&nbsp;Dino Novko,&nbsp;Hrvoje Petek,&nbsp;Min Feng","doi":"10.1126/sciadv.ado3470","DOIUrl":null,"url":null,"abstract":"<div >Scanning tunneling microscopy (STM) vibronic spectroscopy, which has provided submolecular insights into electron-vibration (vibronic) coupling, faces challenges when probing the pivotal low-frequency vibronic excitations. Because of eigenstate broadening on solid substrates, resolving low-frequency vibronic states demands strong decoupling. This work designs a type II band alignment in STM junction to achieve effective charge-transfer state decoupling. This strategy enables the successful identification of the lowest-frequency H<sub>g</sub>(ω<sub>1</sub>) (Raman-active H<sub>g</sub> mode) vibronic excitation within single C<sub>60</sub> molecules, which, despite being notably pronounced in electron transport of C<sub>60</sub> single-molecule transistors, has remained hidden at submolecular level. Our results show that the observed H<sub>g</sub>(ω<sub>1</sub>) excitation is “anchored” to all molecules, irrespective of local geometry, challenging common understanding of structural definition of vibronic excitation governed by Franck-Condon principle. Density functional theory calculations reveal existence of molecule-substrate interfacial charge-transfer dipole, which, although overlooked previously, drives the dominant H<sub>g</sub>(ω<sub>1</sub>) excitation. This charge-transfer dipole is not specific but must be general at interfaces, influencing vibronic coupling in charge transport.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 43","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ado3470","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ado3470","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Scanning tunneling microscopy (STM) vibronic spectroscopy, which has provided submolecular insights into electron-vibration (vibronic) coupling, faces challenges when probing the pivotal low-frequency vibronic excitations. Because of eigenstate broadening on solid substrates, resolving low-frequency vibronic states demands strong decoupling. This work designs a type II band alignment in STM junction to achieve effective charge-transfer state decoupling. This strategy enables the successful identification of the lowest-frequency Hg1) (Raman-active Hg mode) vibronic excitation within single C60 molecules, which, despite being notably pronounced in electron transport of C60 single-molecule transistors, has remained hidden at submolecular level. Our results show that the observed Hg1) excitation is “anchored” to all molecules, irrespective of local geometry, challenging common understanding of structural definition of vibronic excitation governed by Franck-Condon principle. Density functional theory calculations reveal existence of molecule-substrate interfacial charge-transfer dipole, which, although overlooked previously, drives the dominant Hg1) excitation. This charge-transfer dipole is not specific but must be general at interfaces, influencing vibronic coupling in charge transport.

Abstract Image

单分子尺度的电荷转移偶极低频振子激发。
扫描隧道显微镜(STM)振子光谱学为电子-振动(振子)耦合提供了亚分子洞察力,但在探测关键的低频振子激发时却面临挑战。由于固体基底上的特征态展宽,分辨低频振子态需要强解耦。这项工作在 STM 结中设计了一种 II 型带对准,以实现有效的电荷转移态去耦。这种策略成功地识别了单个 C60 分子中的最低频率 Hg(ω1)(拉曼活性 Hg 模式)振动激发,尽管这种激发在 C60 单分子晶体管的电子传输中非常明显,但却一直隐藏在亚分子水平。我们的研究结果表明,观察到的 Hg(ω1) 激发 "锚定 "在所有分子上,与局部几何形状无关,这挑战了人们对受制于弗兰克-康顿原理的振动激发结构定义的普遍理解。密度泛函理论计算揭示了分子-基底界面电荷转移偶极子的存在。这种电荷转移偶极子不是特异性的,但在界面上一定是普遍存在的,会影响电荷传输中的振子耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信