The impact of voluntary wheel-running exercise on hippocampal neurogenesis and behaviours in response to nicotine cessation in rats.

IF 3.5 3区 医学 Q2 NEUROSCIENCES
Magdalena Zaniewska, Sabina Brygider, Iwona Majcher-Maślanka, Dawid Gawliński, Urszula Głowacka, Sława Glińska, Łucja Balcerzak
{"title":"The impact of voluntary wheel-running exercise on hippocampal neurogenesis and behaviours in response to nicotine cessation in rats.","authors":"Magdalena Zaniewska, Sabina Brygider, Iwona Majcher-Maślanka, Dawid Gawliński, Urszula Głowacka, Sława Glińska, Łucja Balcerzak","doi":"10.1007/s00213-024-06705-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale: </strong>The literature indicates that nicotine exposure or its discontinuation impair adult hippocampal neurogenesis in rats, though the impact of exercise on this process remains unclear. We have previously shown that disturbances in the number of doublecortin (DCX, a marker of immature neurons)-positive (DCX<sup>+</sup>) cells in the dentate gyrus (DG) of the hippocampus during nicotine deprivation may contribute to a depression-like state in rats.</p><p><strong>Objectives: </strong>This study aimed to investigate the effect of running on hippocampal neurogenesis, depression-like symptoms, and drug-seeking behaviour during nicotine deprivation.</p><p><strong>Methods: </strong>The rats were subjected to nicotine (0.03 mg/kg/inf) self-administration via an increasing schedule of reinforcement. After 21 sessions, the animals entered a 14-day abstinence phase during which they were housed in either standard home cages without wheels, cages equipped with running wheels, or cages with locked wheels.</p><p><strong>Results: </strong>Wheel running increased the number of K<sub>i</sub>-67<sup>+</sup> and DCX<sup>+</sup> cells in the DG of both nicotine-deprived and nicotine-naive rats. Wheel-running exercise evoked an antidepressant effect on abstinence Day 14 but had no effect on nicotine-seeking behaviour on abstinence Day 15 compared to rats with locked-wheel access.</p><p><strong>Conclusions: </strong>In summary, long-term wheel running positively affected the number of immature neurons in the hippocampus, which corresponded with an antidepressant response in nicotine-weaned rats. One possible mechanism underlying the positive effect of running on the affective state during nicotine cessation may be the reduction in deficits in DCX<sup>+</sup> cells in the hippocampus.</p>","PeriodicalId":20783,"journal":{"name":"Psychopharmacology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00213-024-06705-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rationale: The literature indicates that nicotine exposure or its discontinuation impair adult hippocampal neurogenesis in rats, though the impact of exercise on this process remains unclear. We have previously shown that disturbances in the number of doublecortin (DCX, a marker of immature neurons)-positive (DCX+) cells in the dentate gyrus (DG) of the hippocampus during nicotine deprivation may contribute to a depression-like state in rats.

Objectives: This study aimed to investigate the effect of running on hippocampal neurogenesis, depression-like symptoms, and drug-seeking behaviour during nicotine deprivation.

Methods: The rats were subjected to nicotine (0.03 mg/kg/inf) self-administration via an increasing schedule of reinforcement. After 21 sessions, the animals entered a 14-day abstinence phase during which they were housed in either standard home cages without wheels, cages equipped with running wheels, or cages with locked wheels.

Results: Wheel running increased the number of Ki-67+ and DCX+ cells in the DG of both nicotine-deprived and nicotine-naive rats. Wheel-running exercise evoked an antidepressant effect on abstinence Day 14 but had no effect on nicotine-seeking behaviour on abstinence Day 15 compared to rats with locked-wheel access.

Conclusions: In summary, long-term wheel running positively affected the number of immature neurons in the hippocampus, which corresponded with an antidepressant response in nicotine-weaned rats. One possible mechanism underlying the positive effect of running on the affective state during nicotine cessation may be the reduction in deficits in DCX+ cells in the hippocampus.

自愿轮跑运动对大鼠海马神经发生和行为的影响,以及对尼古丁戒断的反应。
理由:文献表明,尼古丁暴露或停止尼古丁暴露会损害大鼠成年海马的神经发生,但运动对这一过程的影响仍不清楚。我们以前曾研究表明,尼古丁剥夺期间海马齿状回(DG)中双皮质素(DCX,一种未成熟神经元的标志物)阳性(DCX+)细胞数量的变化可能会导致大鼠出现类似抑郁症的状态:本研究旨在探讨尼古丁剥夺期间跑步对海马神经发生、抑郁样症状和觅药行为的影响:方法:对大鼠进行尼古丁(0.03 毫克/千克/只)自我给药,通过递增式强化训练。21次训练后,大鼠进入为期14天的戒断期,在此期间,大鼠分别被关在没有轮子的标准家用笼子、装有跑步轮子的笼子或带锁定轮子的笼子中:结果:轮跑增加了尼古丁缺乏大鼠和尼古丁缺乏大鼠DG中Ki-67+和DCX+细胞的数量。在戒断第14天,车轮跑运动产生了抗抑郁作用,但在戒断第15天,与车轮上锁的大鼠相比,车轮跑运动对尼古丁寻求行为没有影响:总之,长期车轮跑步对海马中未成熟神经元的数量有积极影响,这与尼古丁断奶大鼠的抗抑郁反应相对应。在尼古丁戒断期间,跑步对情绪状态产生积极影响的一个可能机制可能是减少了海马中DCX+细胞的缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Psychopharmacology
Psychopharmacology 医学-精神病学
CiteScore
7.10
自引率
5.90%
发文量
257
审稿时长
2-4 weeks
期刊介绍: Official Journal of the European Behavioural Pharmacology Society (EBPS) Psychopharmacology is an international journal that covers the broad topic of elucidating mechanisms by which drugs affect behavior. The scope of the journal encompasses the following fields: Human Psychopharmacology: Experimental This section includes manuscripts describing the effects of drugs on mood, behavior, cognition and physiology in humans. The journal encourages submissions that involve brain imaging, genetics, neuroendocrinology, and developmental topics. Usually manuscripts in this section describe studies conducted under controlled conditions, but occasionally descriptive or observational studies are also considered. Human Psychopharmacology: Clinical and Translational This section comprises studies addressing the broad intersection of drugs and psychiatric illness. This includes not only clinical trials and studies of drug usage and metabolism, drug surveillance, and pharmacoepidemiology, but also work utilizing the entire range of clinically relevant methodologies, including neuroimaging, pharmacogenetics, cognitive science, biomarkers, and others. Work directed toward the translation of preclinical to clinical knowledge is especially encouraged. The key feature of submissions to this section is that they involve a focus on clinical aspects. Preclinical psychopharmacology: Behavioral and Neural This section considers reports on the effects of compounds with defined chemical structures on any aspect of behavior, in particular when correlated with neurochemical effects, in species other than humans. Manuscripts containing neuroscientific techniques in combination with behavior are welcome. We encourage reports of studies that provide insight into the mechanisms of drug action, at the behavioral and molecular levels. Preclinical Psychopharmacology: Translational This section considers manuscripts that enhance the confidence in a central mechanism that could be of therapeutic value for psychiatric or neurological patients, using disease-relevant preclinical models and tests, or that report on preclinical manipulations and challenges that have the potential to be translated to the clinic. Studies aiming at the refinement of preclinical models based upon clinical findings (back-translation) will also be considered. The journal particularly encourages submissions that integrate measures of target tissue exposure, activity on the molecular target and/or modulation of the targeted biochemical pathways. Preclinical Psychopharmacology: Molecular, Genetic and Epigenetic This section focuses on the molecular and cellular actions of neuropharmacological agents / drugs, and the identification / validation of drug targets affecting the CNS in health and disease. We particularly encourage studies that provide insight into the mechanisms of drug action at the molecular level. Manuscripts containing evidence for genetic or epigenetic effects on neurochemistry or behavior are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信