Elena Torskaya, Ivan Shkalei, Fedor Stepanov, Yulia Makhovskaya, Afanasy Dyakonov, Natalia Petrova
{"title":"Using Thin Ultra-High-Molecular-Weight Polyethylene Coatings to Reduce Friction in Frost-Resistant Rubbers.","authors":"Elena Torskaya, Ivan Shkalei, Fedor Stepanov, Yulia Makhovskaya, Afanasy Dyakonov, Natalia Petrova","doi":"10.3390/polym16202870","DOIUrl":null,"url":null,"abstract":"<p><p>Frost-resistant rubbers retain their highly elastic properties over a wide temperature range. They are used in various friction units (e.g., seals), but their high friction coefficient and low wear resistance lead to the need for frequent replacement. In this paper, we propose applying thin (several hundred microns) UHMWPE coatings to formed rubber rings. The application technology depends on the required coating thickness. Friction tests of the coatings and pure UHMWPE were performed using the ball-on-disk (unidirectional sliding) scheme for various loads and velocities. In the experiments, the friction coefficients and temperatures near the contact area were determined. Friction tracks were studied using microscopy methods. The sliding contact of the ball and the two-layer material was modeled to obtain the dependences of the deformation component of friction on the sliding velocity for coatings of different thicknesses. UHMWPE is sensitive to frictional heating, so the thermal problem of determining the temperature in the contact area was also solved. It is shown that the minimum friction coefficient occurs for coatings with a thickness of 600 μm. At the same time, in the case of the 300 μm coating, the surface of the friction track is practically no different from the initial one. Thus, the studied combination of polymers provides antifrictional properties and wear resistance to the surface layer while maintaining the damping properties of rubber.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511045/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16202870","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Frost-resistant rubbers retain their highly elastic properties over a wide temperature range. They are used in various friction units (e.g., seals), but their high friction coefficient and low wear resistance lead to the need for frequent replacement. In this paper, we propose applying thin (several hundred microns) UHMWPE coatings to formed rubber rings. The application technology depends on the required coating thickness. Friction tests of the coatings and pure UHMWPE were performed using the ball-on-disk (unidirectional sliding) scheme for various loads and velocities. In the experiments, the friction coefficients and temperatures near the contact area were determined. Friction tracks were studied using microscopy methods. The sliding contact of the ball and the two-layer material was modeled to obtain the dependences of the deformation component of friction on the sliding velocity for coatings of different thicknesses. UHMWPE is sensitive to frictional heating, so the thermal problem of determining the temperature in the contact area was also solved. It is shown that the minimum friction coefficient occurs for coatings with a thickness of 600 μm. At the same time, in the case of the 300 μm coating, the surface of the friction track is practically no different from the initial one. Thus, the studied combination of polymers provides antifrictional properties and wear resistance to the surface layer while maintaining the damping properties of rubber.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.