Scaling Relationships of the Structural and Rheological Behavior of Tadpole Polymer Chains in Dilute Solution Systems Using Brownian Dynamics Simulations.
{"title":"Scaling Relationships of the Structural and Rheological Behavior of Tadpole Polymer Chains in Dilute Solution Systems Using Brownian Dynamics Simulations.","authors":"Chaehyun Cho, Jun Mo Kim","doi":"10.3390/polym16202871","DOIUrl":null,"url":null,"abstract":"<p><p>Tadpole polymers, also known as lasso polymers, feature molecular structures that combine a single ring with a single linear side branch, leading to distinct conformational, dynamical, and rheological characteristics compared to their corresponding counterparts, particularly pure linear and pure ring polymers. To elucidate the mechanisms underlying these distinctive behaviors, comprehensive mesoscopic Brownian dynamics (BD) simulations of dilute solution systems of tadpole polymers were conducted using a bead-rod chain model under both equilibrium and flow conditions. Three types of tadpole polymer chains were prepared by varying the ring-to-linear ratio within the tadpole chain and comparing them with the corresponding linear and ring chains. Depending on this ratio, tadpole polymer chains exhibit entirely different structural properties and rotational dynamics, both in equilibrium and under shear flow. As the linear proportion within the tadpole chain increased, the structural, dynamic, and rheological properties of the tadpole polymer chains became more similar to those of pure linear polymers. Conversely, with an increasing ring proportion, these properties began to resemble those of pure ring polymers. Based on these observed tendencies, a simple general scaling expression is proposed for tadpole polymer properties that integrates scaling expressions for both pure linear and pure ring polymers. Our results indicate that the conformational, dynamic, and rheological properties of tadpole polymers, as predicted by these simple scaling expressions, are in good agreement with the simulated values, a result we consider statistically significant.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510819/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16202871","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Tadpole polymers, also known as lasso polymers, feature molecular structures that combine a single ring with a single linear side branch, leading to distinct conformational, dynamical, and rheological characteristics compared to their corresponding counterparts, particularly pure linear and pure ring polymers. To elucidate the mechanisms underlying these distinctive behaviors, comprehensive mesoscopic Brownian dynamics (BD) simulations of dilute solution systems of tadpole polymers were conducted using a bead-rod chain model under both equilibrium and flow conditions. Three types of tadpole polymer chains were prepared by varying the ring-to-linear ratio within the tadpole chain and comparing them with the corresponding linear and ring chains. Depending on this ratio, tadpole polymer chains exhibit entirely different structural properties and rotational dynamics, both in equilibrium and under shear flow. As the linear proportion within the tadpole chain increased, the structural, dynamic, and rheological properties of the tadpole polymer chains became more similar to those of pure linear polymers. Conversely, with an increasing ring proportion, these properties began to resemble those of pure ring polymers. Based on these observed tendencies, a simple general scaling expression is proposed for tadpole polymer properties that integrates scaling expressions for both pure linear and pure ring polymers. Our results indicate that the conformational, dynamic, and rheological properties of tadpole polymers, as predicted by these simple scaling expressions, are in good agreement with the simulated values, a result we consider statistically significant.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.